Positive and nonnegative curvature on bundles
束上的正曲率和非负曲率
基本信息
- 批准号:0355120
- 负责人:
- 金额:$ 6.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2003
- 资助国家:美国
- 起止时间:2003-09-08 至 2007-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal DMS-0303326P.I.: Kristopher Tapp (Bryn Mawr College)Title: Positive and nonnegative curvature on bundlesABSTRACT:In recent research, the PI developed tools for studying the following two general problems in Riemannian geometry: (1) For which vector bundles does the total space admit a complete Riemannian metric with nonnegative sectional curvature? (2) For which sphere bundles does the total space admit a Riemannian metric with positive curvature? The PI plans to use these tools to find new examples, obstructions, and rigidity theorems. In particular, the PI plans to construct metrics of nonnegative curvature on holomorphic vector bundles over complex projective space, and determine whether Einstein-Hermitian connections can appear as the connections in the normal bundles of their souls. Also, the PI intends to study nonnegatively curved metrics on trivial vector bundles over spheres. This problem is related to the Hopf conjecture, or more specifically to the question: how large is the family of nonnegatively curved metrics on the product of two spheres? The PI will work with undergraduate students studying the metrics on such products obtained by re-scaling the product metric by a compact Lie group which acts by isometries. Finally, the PI proposes to find obstructions to metrics of nonnegative curvature on vector bundles over spheres with prescribed soul metrics.The question of which manifolds can have nonnegative curvature is central to Riemannian geometry. Nonnegative curvature is a visually natural restriction on the way in which an object curves about in space. All known examples come from compact Lie groups with bi-invariant metrics, which are indispensable tools in diverse fields of mathematics, physics, cosmology, and other disciplines in which simplification is achieved through symmetry. The search for new examples of manifolds with nonnegative (or positive) curvature has a long history, yet very few constructions are known. Since his tools represent a construction which is substantially different form known methods, the PI believes they deserve further study.
提案DMS-0303326 P.I.:Kristopher Tapp(Bryn Mawr College)题目:黎曼几何中的正曲率和非负曲率摘要:在最近的研究中,PI开发了研究黎曼几何中以下两个一般问题的工具:(1)对于哪些向量丛,全空间允许具有非负截面曲率的完备黎曼度量? (2)对于哪些球丛,全空间允许具有正曲率的黎曼度量? PI计划使用这些工具来寻找新的例子、障碍和刚性定理。 特别地,PI计划构造复射影空间上全纯向量丛的非负曲率度量,并确定Einstein-Hermitian联络是否可以作为其灵魂的法丛中的联络出现。 此外,PI打算研究球上平凡向量丛上的非负弯曲度量。 这个问题是有关的霍普夫猜想,或更具体地说,问题:有多大的家庭非负弯曲度量的产品的两个领域? PI将与本科生一起研究这些产品的度量,这些产品是通过一个紧凑的李群来重新缩放产品度量而获得的。 最后,PI提出在具有指定灵魂度量的球面上的向量丛上寻找非负曲率度量的障碍。哪些流形可以具有非负曲率的问题是黎曼几何的核心。 非负曲率是对物体在空间中弯曲的方式的视觉自然限制。 所有已知的例子都来自具有双不变度量的紧致李群,它们是数学、物理、宇宙学和其他通过对称性实现简化的学科中不可或缺的工具。 寻找具有非负(或正)曲率的流形的新例子有很长的历史,但已知的构造很少。 由于他的工具代表了一种与已知方法截然不同的结构,PI认为它们值得进一步研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kristopher Tapp其他文献
Differential Geometry of Curves and Surfaces
- DOI:
10.1038/169560b0 - 发表时间:
1952-04 - 期刊:
- 影响因子:64.8
- 作者:
Kristopher Tapp - 通讯作者:
Kristopher Tapp
Metrics with nonnegative curvature on $${S^2 \times \mathbb{R}^4}$$
- DOI:
10.1007/s10455-011-9301-1 - 发表时间:
2011-11-13 - 期刊:
- 影响因子:0.700
- 作者:
Kristopher Tapp - 通讯作者:
Kristopher Tapp
Obstruction to Positive Curvature on Homogeneous Bundles
- DOI:
10.1007/s10711-006-9054-3 - 发表时间:
2006-04-25 - 期刊:
- 影响因子:0.500
- 作者:
Kristopher Tapp - 通讯作者:
Kristopher Tapp
Homogeneous Metrics with Nonnegative Curvature
- DOI:
10.1007/s12220-009-9081-z - 发表时间:
2009-06-11 - 期刊:
- 影响因子:1.500
- 作者:
Lorenz Schwachhöfer;Kristopher Tapp - 通讯作者:
Kristopher Tapp
Rigidity for Nonnegatively Curved Metrics on S 2 × R3
- DOI:
10.1023/b:agag.0000011731.46087.10 - 发表时间:
2004-03-01 - 期刊:
- 影响因子:0.700
- 作者:
Kristopher Tapp - 通讯作者:
Kristopher Tapp
Kristopher Tapp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kristopher Tapp', 18)}}的其他基金
Nonnegative Curvature on Lie Groups and Bundles
李群和丛上的非负曲率
- 批准号:
0902942 - 财政年份:2009
- 资助金额:
$ 6.05万 - 项目类别:
Standard Grant
Positive and nonnegative curvature on bundles
束上的正曲率和非负曲率
- 批准号:
0303326 - 财政年份:2003
- 资助金额:
$ 6.05万 - 项目类别:
Standard Grant
相似国自然基金
非负矩阵分解及在盲信号处理中的应用
- 批准号:60874061
- 批准年份:2008
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Extensions of the Nonnegative Matrix Factorization Algorithm with Applications to Large-Scale Data Sets
非负矩阵分解算法的扩展及其在大规模数据集上的应用
- 批准号:
547245-2020 - 财政年份:2022
- 资助金额:
$ 6.05万 - 项目类别:
Postgraduate Scholarships - Doctoral
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
- 批准号:
RGPIN-2019-05408 - 财政年份:2022
- 资助金额:
$ 6.05万 - 项目类别:
Discovery Grants Program - Individual
Extensions of the Nonnegative Matrix Factorization Algorithm with Applications to Large-Scale Data Sets
非负矩阵分解算法的扩展及其在大规模数据集上的应用
- 批准号:
547245-2020 - 财政年份:2021
- 资助金额:
$ 6.05万 - 项目类别:
Postgraduate Scholarships - Doctoral
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
- 批准号:
RGPIN-2019-05408 - 财政年份:2021
- 资助金额:
$ 6.05万 - 项目类别:
Discovery Grants Program - Individual
Efficient Numerical Solution for Constrained Tensor Ring Decomposition: A Theoretical Convergence Analysis and Applications
约束张量环分解的高效数值解:理论收敛性分析及应用
- 批准号:
20K19749 - 财政年份:2020
- 资助金额:
$ 6.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
- 批准号:
RGPIN-2019-05408 - 财政年份:2020
- 资助金额:
$ 6.05万 - 项目类别:
Discovery Grants Program - Individual
Extensions of the Nonnegative Matrix Factorization Algorithm with Applications to Large-Scale Data Sets
非负矩阵分解算法的扩展及其在大规模数据集上的应用
- 批准号:
547245-2020 - 财政年份:2020
- 资助金额:
$ 6.05万 - 项目类别:
Postgraduate Scholarships - Doctoral
Nonnegative and Combinatorial Matrix Theory
非负和组合矩阵理论
- 批准号:
RGPIN-2019-05408 - 财政年份:2019
- 资助金额:
$ 6.05万 - 项目类别:
Discovery Grants Program - Individual
Theory and Applications of Nonnegative Matrix Factorization
非负矩阵分解的理论与应用
- 批准号:
341718-2013 - 财政年份:2019
- 资助金额:
$ 6.05万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric inference for nonnegative data using asymmetric kernel/Bernstein polynomial approximation and its development
使用非对称核/伯恩斯坦多项式逼近的非负数据非参数推理及其发展
- 批准号:
17K00041 - 财政年份:2017
- 资助金额:
$ 6.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)