Qameleon: Hardware/software Co-operative Automated Tuning for Heterogeneous Architectures
Qameleon:异构架构的硬件/软件协同自动调优
基本信息
- 批准号:0903447
- 负责人:
- 金额:$ 26.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."The push toward heterogeneous architectures to increase performance, while reducing energy consumption creates considerable challenges for software development. For example, programmers must make non-trivial decisions about when to use special accelerators vs. powerful core CPUs and also become steeped in complex architectural details to tune effectively. The goal of this research project is to alleviate these challenges using a novel framework that enables a wide-range of computations to be expressed at a high-level and subsequently tuned automatically for the underlying heterogeneous platform. More specifically, the PIs propose Qameleon, a new programming environment that can cooperatively tune the program and the hardware configuration automatically and continuously using statistical machine learning techniques. The proposed work will be the first in GPU programming to consider adaptively partitioning a computation on a heterogeneous platform at run-time. This work will also improve understanding of the trade-offs among programming features, architectural support, performance, and power in heterogeneous architectures. The research will also develop several metrics to characterize the application based on the outcome of the statistical modeling. The proposed research brings together cross-disciplinary techniques?from architectures, compilers, machine learning, and applications ? and researchers from both academia and industry to build new common programming interfaces that can hide the complexity of heterogeneous architectures from the programmers, while still providing high-performance and energy-efficient execution. The Qameleon programming environment will be designed to teach at the undergraduate level by incorporating research results into new undergraduate courses aimed at both computer scientists and domain scientists alike.
“该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。“推动异构体系结构以提高性能,同时降低能耗,为软件开发带来了相当大的挑战。例如,程序员必须就何时使用特殊加速器与强大的核心CPU做出重要决定,并且还要沉浸在复杂的架构细节中以进行有效的调优。本研究项目的目标是使用一种新的框架来缓解这些挑战,该框架使广泛的计算能够在高级别上表达,并随后针对底层异构平台自动进行调整。更具体地说,PI提出了Qameleon,这是一种新的编程环境,可以使用统计机器学习技术自动持续地协同调整程序和硬件配置。拟议的工作将是第一个在GPU编程考虑自适应分区的计算在运行时的异构平台上。这项工作还将提高对异构体系结构中编程特性、体系结构支持、性能和功能之间的权衡的理解。该研究还将开发几个指标,以根据统计建模的结果来表征应用程序。拟议的研究汇集了跨学科的技术?从架构、编译器、机器学习和应用程序?与学术界和工业界的研究人员合作,构建新的通用编程接口,可以向程序员隐藏异构体系结构的复杂性,同时仍然提供高性能和高能效的执行。Qameleon编程环境将被设计为通过将研究成果纳入针对计算机科学家和领域科学家的新本科课程来教授本科水平。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyesoon Kim其他文献
The AM-Bench: An Android Multimedia Benchmark Suite
AM-Bench:Android 多媒体基准测试套件
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Chayong Lee;Euna Kim;Hyesoon Kim - 通讯作者:
Hyesoon Kim
ASCELLA: Accelerating Sparse Computation by Enabling Stream Accesses to Memory
ASCELLA:通过启用对内存的流访问来加速稀疏计算
- DOI:
10.23919/date48585.2020.9116501 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Bahar Asgari;Ramyad Hadidi;Hyesoon Kim - 通讯作者:
Hyesoon Kim
The 2019 Top Picks in Computer Architecture
2019 年计算机架构热门精选
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:3.6
- 作者:
Hyesoon Kim - 通讯作者:
Hyesoon Kim
EHT-SR: An Entropy-Based Hybrid Approach for Faster Super-Resolution
EHT-SR:一种基于熵的混合方法,可实现更快的超分辨率
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Abhilash Dharmavarapu;Stefano Petrangeli;Jiashen Cao;Hyesoon Kim - 通讯作者:
Hyesoon Kim
Hardware-based Always-On Heap Memory Safety
基于硬件的始终在线堆内存安全
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yonghae Kim;Jaekyu Lee;Hyesoon Kim - 通讯作者:
Hyesoon Kim
Hyesoon Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyesoon Kim', 18)}}的其他基金
Collaborative Research: PPoSS: LARGE: Research into the Use and iNtegration of Data Movement Accelerators (RUN-DMX)
协作研究:PPoSS:大型:数据移动加速器 (RUN-DMX) 的使用和集成研究
- 批准号:
2316176 - 财政年份:2023
- 资助金额:
$ 26.78万 - 项目类别:
Continuing Grant
Elements:Open-source hardware and software evaluation system for UAV
要素:无人机开源软硬件评估系统
- 批准号:
2103951 - 财政年份:2021
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
CSR: Small:Collaborative Research: Decentralized Real-Time Machine Learning Systems on Near-User Edge Devices
CSR:小型:协作研究:近用户边缘设备上的分散式实时机器学习系统
- 批准号:
1815047 - 财政年份:2018
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
Student Travel Support for the 43rd International Symposium on Computer Architecture (ISCA)
第 43 届计算机体系结构国际研讨会 (ISCA) 的学生旅行支持
- 批准号:
1620317 - 财政年份:2016
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
XPS: FULL: CCA: Cymric: A Flexible Processor-Near-Memory System Architecture
XPS:完整:CCA:Cymric:灵活的处理器近内存系统架构
- 批准号:
1533767 - 财政年份:2015
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
CSR: Small: Memory System Optimizations to Enable Fast-Response Mobile Devices at Low Power
CSR:小:内存系统优化,以低功耗实现快速响应移动设备
- 批准号:
1526798 - 财政年份:2015
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
CAREER: CPU and GPU Based Heterogeneous Architecture Design and Managements
职业:基于CPU和GPU的异构架构设计和管理
- 批准号:
1054830 - 财政年份:2011
- 资助金额:
$ 26.78万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Data-Driven Hardware and Software Techniques to Enable Sustainable Data Center Services
职业:数据驱动的硬件和软件技术,以实现可持续的数据中心服务
- 批准号:
2340042 - 财政年份:2024
- 资助金额:
$ 26.78万 - 项目类别:
Continuing Grant
SHF: Small: Taming Huge Page Problems for Memory Bulk Operations Using a Hardware/Software Co-Design Approach
SHF:小:使用硬件/软件协同设计方法解决内存批量操作的大页面问题
- 批准号:
2400014 - 财政年份:2024
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
SHF: Small: Hardware-Software Co-design for Privacy Protection on Deep Learning-based Recommendation Systems
SHF:小型:基于深度学习的推荐系统的隐私保护软硬件协同设计
- 批准号:
2334628 - 财政年份:2024
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
- 批准号:
2339084 - 财政年份:2024
- 资助金额:
$ 26.78万 - 项目类别:
Continuing Grant
Automation and cost reduction of the hardware and software components of a novel indoor sustainable vertical growing solution
新型室内可持续垂直种植解决方案的硬件和软件组件的自动化和成本降低
- 批准号:
83007861 - 财政年份:2024
- 资助金额:
$ 26.78万 - 项目类别:
Innovation Loans
CAREER: Enabling Scalable and Resilient Quantum Computer Architectures through Synergistic Hardware-Software Co-Design
职业:通过协同硬件软件协同设计实现可扩展且有弹性的量子计算机架构
- 批准号:
2340267 - 财政年份:2024
- 资助金额:
$ 26.78万 - 项目类别:
Continuing Grant
TELEMETRY - Trustworthy mEthodologies, open knowLedgE & autoMated tools for sEcurity Testing of IoT software, haRdware & ecosYstems
遥测 - 值得信赖的方法,开放的知识
- 批准号:
10087006 - 财政年份:2023
- 资助金额:
$ 26.78万 - 项目类别:
EU-Funded
Collaborative Research: DESC: Type 1: Software-Hardware Recycling and Repair Dataset Infrastructure (SHReDI) for Sustainable Computing
合作研究:DESC:类型 1:用于可持续计算的软硬件回收和修复数据集基础设施 (SHReDI)
- 批准号:
2324949 - 财政年份:2023
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
Conference: NSF Workshop on Hardware-Software Co-design for Neuro-Symbolic Computation
会议:NSF 神经符号计算软硬件协同设计研讨会
- 批准号:
2338640 - 财政年份:2023
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Scalable Hardware and Software Environment Enabling Secure Multi-party Learning
协作研究:CCRI:新:可扩展的硬件和软件环境支持安全的多方学习
- 批准号:
2347617 - 财政年份:2023
- 资助金额:
$ 26.78万 - 项目类别:
Standard Grant