Numerical Simulations and Theoretical Studies of the Plasma Dynamo and Couette Flow Experiment

等离子体发电机和库埃特流实验的数值模拟和理论研究

基本信息

  • 批准号:
    0903926
  • 负责人:
  • 金额:
    $ 29.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-08-01 至 2009-10-31
  • 项目状态:
    已结题

项目摘要

This award funds research to carry out numerical simulations in support of Plasma Dynamo and Couette Flow experiments. A Plasma Couette experiment, the first of its kind, has been constructed to study Magnetorotational Instability (MRI) in a hot, unmagnetized and fast flowing plasma. Plasma is confined by a strong multipole magnetic field at the plasma surface. The goals of the experiment are to study the MRI and possible self-generation of magnetic field by MRI-driven turbulence at high magnetic Reynolds numbers (the regime applicable to astrophysical plasmas). If successful, the concept could be readily extended to a larger, plasma-based dynamo experiment, studying the self-generation of magnetic field (MHD dynamo) but through hydrodynamic-driven turbulence in a confined plasma. Numerical modeling and theoretical studies are crucial for advancing the understanding of these two experiments and assuring their ultimate success. Numerical simulations using the extended MHD code, NIMROD, will be done and the numerical results will be directly compared with the experimental measurements. Numerical simulations are also expected to provide a guidance for the experimental design.The proposed simulations with NIMROD code would strongly benefit the validation of a code, NIMROD, extensively used by the Magnetic Fusion community. In addition, the Magneto-rotational Instability (MRI) is thought to play a vital role in many astrophysical settings. Thus it is essential to have a line of physical experiments and computational models carried out that can test, guide and perhaps challenge many of the precepts now being applied in theoretical models with regard to MRI. This proposal was submitted to the NSF-DoE Partnership in Plasma Science and Engineering joint solicitation 08-589. This award is being funded jointly by the Divisions of Physics and Astronomical Sciences of the Mathematical and Physical Sciences Directorate.
该奖项资助研究进行数值模拟,以支持等离子发电机和库埃特流实验。首次建立了等离子体库埃特实验,用于研究高温、非磁化、快速流动等离子体中的磁旋转不稳定性。等离子体被等离子体表面的强多极磁场约束。该实验的目标是研究MRI和可能的自我生成磁场的MRI驱动的湍流在高磁雷诺数(适用于天体物理等离子体的制度)。如果成功的话,这个概念可以很容易地扩展到一个更大的,基于等离子体的发电机实验,研究磁场的自我生成(MHD发电机),但通过流体动力学驱动的湍流在一个封闭的等离子体。数值模拟和理论研究对于促进对这两个实验的理解并确保其最终成功至关重要。 将使用扩展的MHD代码尼姆罗德进行数值模拟,并将数值结果与实验测量结果进行直接比较。数值模拟也有望为实验设计提供指导。建议的模拟与尼姆罗德代码将大大有利于验证的代码,尼姆罗德,广泛使用的磁聚变社区。此外,磁旋转不稳定性(MRI)被认为在许多天体物理环境中起着至关重要的作用。因此,必须进行一系列物理实验和计算模型,以测试、指导甚至挑战目前在MRI理论模型中应用的许多规则。该提案已提交给NSF-DoE等离子体科学与工程合作伙伴关系联合征集08-589。该奖项由数学和物理科学理事会物理和天文科学司共同资助。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fatima Ebrahimi其他文献

Fatima Ebrahimi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fatima Ebrahimi', 18)}}的其他基金

Nonlocal Magneto-Curvature Instabilities and their Associated Nonlinear Transport in Astrophysical Disks
天体物理盘中的非局域磁曲率不稳定性及其相关的非线性输运
  • 批准号:
    2308839
  • 财政年份:
    2023
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
Numerical Simulations and Theoretical Studies of the Plasma Dynamo and Couette Flow Experiment
等离子体发电机和库埃特流实验的数值模拟和理论研究
  • 批准号:
    0962244
  • 财政年份:
    2009
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Continuing Grant

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Quantum Theoretical Analyses of Plasma Processing for Novel and Diverse Materials Using Multi-Scale Numerical Simulations
使用多尺度数值模拟对新型和多样化材料的等离子体加工进行量子理论分析
  • 批准号:
    15H05736
  • 财政年份:
    2015
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Theoretical studies and numerical simulations of backward-wave photonic micro devices.
后波光子微器件的理论研究和数值模拟。
  • 批准号:
    1346547
  • 财政年份:
    2013
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
Theoretical studies and numerical simulations of backward-wave photonic micro devices.
后波光子微器件的理论研究和数值模拟。
  • 批准号:
    1028353
  • 财政年份:
    2010
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Standard Grant
Numerical Simulations and Theoretical Studies of the Plasma Dynamo and Couette Flow Experiment
等离子体发电机和库埃特流实验的数值模拟和理论研究
  • 批准号:
    0962244
  • 财政年份:
    2009
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Continuing Grant
Liquid crystalline materials in lubrication: theoretical approach and numerical simulations
润滑中的液晶材料:理论方法和数值模拟
  • 批准号:
    347363-2007
  • 财政年份:
    2007
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Theoretical studies on formation of extrasolar planetary systems through numerical simulations
通过数值模拟对太阳系外行星系统形成进行理论研究
  • 批准号:
    16077202
  • 财政年份:
    2004
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Theoretical studies of soft matter, structural fluids and pattern formation on the visual cortex: Numerical simulations in statistical physics
软物质、结构流体和视觉皮层图案形成的理论研究:统计物理学中的数值模拟
  • 批准号:
    5932-1992
  • 财政年份:
    1995
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of soft matter, structural fluids and pattern formation on the visual cortex: Numerical simulations in statistical physics
软物质、结构流体和视觉皮层图案形成的理论研究:统计物理学中的数值模拟
  • 批准号:
    5932-1992
  • 财政年份:
    1994
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of soft matter, structural fluids and pattern formation on the visual cortex: Numerical simulations in statistical physics
软物质、结构流体和视觉皮层图案形成的理论研究:统计物理学中的数值模拟
  • 批准号:
    5932-1992
  • 财政年份:
    1993
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Discovery Grants Program - Individual
Theoretical studies of soft matter, structural fluids and pattern formation on the visual cortex: Numerical simulations in statistical physics
软物质、结构流体和视觉皮层图案形成的理论研究:统计物理学中的数值模拟
  • 批准号:
    5932-1992
  • 财政年份:
    1992
  • 资助金额:
    $ 29.53万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了