Development of Composite Likelihood Method in High-Dimensional Correlated Data Analysis: Estimation, Inference and Model Selection
高维相关数据分析中复合似然法的发展:估计、推理和模型选择
基本信息
- 批准号:0904177
- 负责人:
- 金额:$ 14.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111‐5).Recent advances in computing and measurement technologies have given subject-matter scientists opportunities to develop large scale experiments and ambitious information collection schemes that have led to various types of high-dimensional correlated data. This proposal focuses on the development of statistical theory and methods of composite likelihood for analyzing such high-dimensional correlated data. In particular, the principle investigator plans to achieve three research goals: To develop a new algorithm analogous to the EM algorithm in the context of composite likelihood theory for the analysis of incomplete high-dimensional data; to develop a new model selection criterion analogous to the Bayesian Information Criterion for the scenario where the number of model parameters may increase in the sample size; and to develop a new procedure to evaluate and boost the efficiency loss due to dimension reduction in the composite likelihood methodology.All the developed methods will be applied to the analysis of data from practical studies to facilitate the understanding of subject-matter sciences and ultimately to improve human knowledge and quality of life. The principle investigator has close connections with researchers in other fields such as Biology, Computer Science, Epidemiology, Health and Medical Sciences at University of Michigan. He has been working closely with these scientists who will serve as local users of the methodologies and provide valuable feedback. The project is also devoted to substantial educational initiatives that will involve undergraduate and graduate students and expose them to state-of-the-art research in various interdisciplinary topics related to the proposed research. These include new courses, short courses at major conferences, summer workshops, mentoring, and software development. These and other dissemination activities will increase awareness of modern powerful methods for data analysis among scientists from other fields.
该奖项是根据2009年美国复苏和再投资法案(公法111& #8208; 5.计算和测量技术的最新进展使主题科学家有机会开展大规模实验和雄心勃勃的信息收集计划,从而产生了各种类型的高维相关数据。该建议的重点是发展用于分析这种高维相关数据的复合似然的统计理论和方法。特别是,主要研究者计划实现三个研究目标:在复合似然理论的背景下,开发一种类似于EM算法的新算法,用于分析不完整的高维数据;开发一种类似于贝叶斯信息准则的新模型选择准则,用于模型参数数量可能在样本量中增加的情况;并提出一种新的方法来评估和提高复合似然方法中因降维而导致的效率损失,这些方法将应用于实际研究数据的分析,以促进对主题科学的理解,并最终提高人类的知识和生活质量。主要研究者与密歇根大学生物学、计算机科学、流行病学、健康和医学科学等其他领域的研究人员有着密切的联系。他一直与这些科学家密切合作,他们将成为这些方法的当地用户,并提供宝贵的反馈。该项目还致力于实质性的教育举措,将涉及本科生和研究生,并使他们接触到与拟议研究有关的各种跨学科主题的最新研究。其中包括新课程、主要会议的短期课程、夏季讲习班、指导和软件开发。这些活动和其他传播活动将提高其他领域科学家对现代强大数据分析方法的认识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Song其他文献
Behaviour of wrinkled thin-walled steel pipes subjected to displacement-controlled axial cyclic loads
- DOI:
10.1016/j.tws.2021.108269 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Habeeb Sobanke;Sreekanta Das;Peter Song;Nader Yoosef-Ghodsi - 通讯作者:
Nader Yoosef-Ghodsi
Impact of Vendor Computerized Physician Order Entry in Community Hospitals
供应商计算机化医生医嘱输入对社区医院的影响
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:5.7
- 作者:
Alexander A. Leung;Carol A. Keohane;M. Amato;S. Simon;Michael Coffey;Nathan Kaufman;Bismarck Cadet;G. Schiff;E. Zimlichman;D. Seger;Catherine S. Yoon;Peter Song;D. Bates - 通讯作者:
D. Bates
360 Pre-Dialysis Fluid Status Is an Important Predictor of Renal Recovery in Patients with Acute Kidney Injury Requiring Renal Replacement Therapy
- DOI:
10.1053/j.ajkd.2011.02.363 - 发表时间:
2011-04-01 - 期刊:
- 影响因子:
- 作者:
Dawn Wolfgram;Mallika Kommareddi;Peter Song;Michael Heung - 通讯作者:
Michael Heung
Quantifying Uncertainty in Classification Performance: ROC Confidence Bands Using Conformal Prediction
量化分类性能的不确定性:使用保形预测的 ROC 置信带
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zheshi Zheng;Bo Yang;Peter Song - 通讯作者:
Peter Song
Prenatal Diet in Relation to Sleep Health of Offspring During Adolescence: Evidence From the ELEMENT Study
- DOI:
10.1093/cdn/nzab046_130 - 发表时间:
2021-06-01 - 期刊:
- 影响因子:
- 作者:
Astrid Zamora;Karen Peterson;Martha Maria Téllez-Rojo;Alejandra Cantoral;Peter Song;Maritsa Solano-González;Adriana Mercado-García;Erica Fossee;Erica Jansen - 通讯作者:
Erica Jansen
Peter Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Peter Song', 18)}}的其他基金
Homogeneity Pursuit in Regression Analysis: Statistical Theory, Integer Optimization, and Algorithms
回归分析中的同质性追求:统计理论、整数优化和算法
- 批准号:
2113564 - 财政年份:2021
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Incremental Regression Analysis of Streaming Data: Estimating Function Theory and Applications
流数据的增量回归分析:估计函数理论及应用
- 批准号:
1811734 - 财政年份:2018
- 资助金额:
$ 14.98万 - 项目类别:
Continuing Grant
Regression Analysis of Networked Data: Estimating Function Theory and Applications
网络数据的回归分析:估计函数理论及其应用
- 批准号:
1513595 - 财政年份:2015
- 资助金额:
$ 14.98万 - 项目类别:
Continuing Grant
Composite Estimating Function Approaches to GeoCopula Models for Complex Spatially Correlated Data
复杂空间相关数据的 GeoCopula 模型的复合估计函数方法
- 批准号:
1208939 - 财政年份:2012
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
相似海外基金
Bartlett Correction for Composite Likelihood Ratio Statistics
复合似然比统计的 Bartlett 校正
- 批准号:
524353-2018 - 财政年份:2018
- 资助金额:
$ 14.98万 - 项目类别:
University Undergraduate Student Research Awards
Use of composite likelihood methods for the estimation of probit models
使用复合似然法估计概率模型
- 批准号:
356500581 - 财政年份:2017
- 资助金额:
$ 14.98万 - 项目类别:
Research Grants
Applications of composite likelihood in biological sciences
复合似然在生物科学中的应用
- 批准号:
227970-2005 - 财政年份:2009
- 资助金额:
$ 14.98万 - 项目类别:
Discovery Grants Program - Individual
Applications of composite likelihood in biological sciences
复合似然在生物科学中的应用
- 批准号:
227970-2005 - 财政年份:2008
- 资助金额:
$ 14.98万 - 项目类别:
Discovery Grants Program - Individual
Applications of composite likelihood in biological sciences
复合似然在生物科学中的应用
- 批准号:
227970-2005 - 财政年份:2007
- 资助金额:
$ 14.98万 - 项目类别:
Discovery Grants Program - Individual
Applications of composite likelihood in biological sciences
复合似然在生物科学中的应用
- 批准号:
227970-2005 - 财政年份:2006
- 资助金额:
$ 14.98万 - 项目类别:
Discovery Grants Program - Individual
Spatial Point Pattern Analysis Using Composite Likelihood
使用复合似然法的空间点模式分析
- 批准号:
0603673 - 财政年份:2006
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Spatial Point Pattern Analysis Using Composite Likelihood
使用复合似然法的空间点模式分析
- 批准号:
0706806 - 财政年份:2006
- 资助金额:
$ 14.98万 - 项目类别:
Standard Grant
Estimation of Large Phylogeny Using Maximum Composite Likelihood
使用最大复合似然估计大系统发育
- 批准号:
18570217 - 财政年份:2006
- 资助金额:
$ 14.98万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Applications of composite likelihood in biological sciences
复合似然在生物科学中的应用
- 批准号:
227970-2005 - 财政年份:2005
- 资助金额:
$ 14.98万 - 项目类别:
Discovery Grants Program - Individual