Collaborative Research: Novel methods for pharmacogenomic data analysis using gene clusters

合作研究:使用基因簇进行药物基因组数据分析的新方法

基本信息

项目摘要

Numerous pharmacogenomic studies have been conducted using microarrays to survey the whole genome and detect disease-associated genes. Genes have the inherent clustering structure. The goal of this study is to develop a systematic framework using principal component analysis (PCA) based methods to detect gene clusters differentially expressed and/or with joint predictive power. More specifically, the investigators will (1) develop novel methodology to detect gene clusters marginally differentially expressed; (2) develop penalization methodology to detect gene clusters with joint predictive power for the disease clinical outcomes of interest; and (3) conduct extensive numerical studies, and develop publicly available software. This study will greatly advance our understanding of the ?large p, small n? statistics as well as human genomics. Methodologies developed in this study can be applied in other areas including image processing, immunology, molecular dynamics, small-angle scattering, and information retrieval.Identification of genomic markers from analysis of pharmacogenomic data is a key step in understanding human genomics and personalized medicine. The proposed study has been motivated by the urgent need to overcome drawbacks of existing methods. It will feature novel statistical methods, rigorous theoretical development, extensive numerical studies, development of public software, and a direct impact on practical studies. The proposed study will enrich the family of high dimensional methodologies in general. In addition, analysis of breast cancer, colon cancer, and lymphoma microarray data will lead to a deeper understanding of the genomic mechanisms underlying those cancers. From educational and social prospective, the proposed study will foster more intensive collaborations among investigators from different institutions and background. It will promote teaching, training and learning at Yale University and at the University of North Carolina. Moreover, the investigators will attend statistical and genomic conferences and give presentations, which may promote interdisciplinary research among scientists from diverse fields.
许多药物基因组学研究已经使用微阵列来调查整个基因组并检测疾病相关基因。基因具有固有的聚类结构。本研究的目的是开发一个系统的框架,使用主成分分析(PCA)为基础的方法来检测基因簇差异表达和/或联合预测能力。更具体地说,研究人员将(1)开发新的方法来检测基因簇的边缘差异表达;(2)开发惩罚方法来检测基因簇与联合预测能力的疾病临床结果的兴趣;和(3)进行广泛的数值研究,并开发公开可用的软件。这项研究将大大促进我们的理解?大p小n统计学和人类基因组学。本研究开发的方法可应用于其他领域,包括图像处理,免疫学,分子动力学,小角散射,和信息retrieval.Identification的基因组标记从药物基因组学数据的分析是理解人类基因组学和个性化医疗的关键一步。所提出的研究的动机是迫切需要克服现有方法的缺点。它将采用新颖的统计方法,严格的理论发展,广泛的数值研究,公共软件的开发,并对实际研究的直接影响。建议的研究将丰富家庭的高维方法一般。此外,对乳腺癌、结肠癌和淋巴瘤微阵列数据的分析将使我们更深入地了解这些癌症的基因组机制。从教育和社会的角度来看,拟议的研究将促进来自不同机构和背景的研究人员之间更深入的合作。它将促进耶鲁大学和北卡罗来纳州大学的教学、培训和学习。此外,研究人员将参加统计和基因组会议并发表演讲,这可能会促进不同领域科学家之间的跨学科研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Kosorok其他文献

Gene signatures derived from transcriptomic-causal networks stratify colorectal cancer patients for effective targeted therapy
  • DOI:
    10.1038/s43856-024-00728-z
  • 发表时间:
    2025-01-08
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Akram Yazdani;Heinz-Josef Lenz;Gianluigi Pillonetto;Raul Mendez-Giraldez;Azam Yazdani;Hanna Sanoff;Reza Hadi;Esmat Samiei;Alan P. Venook;Mark J. Ratain;Naim Rashid;Benjamin G. Vincent;Xueping Qu;Yujia Wen;Michael Kosorok;William F. Symmans;John Paul Y. C. Shen;Michael S. Lee;Scott Kopetz;Andrew B. Nixon;Monica M. Bertagnolli;Charles M. Perou;Federico Innocenti
  • 通讯作者:
    Federico Innocenti
Using a Natural Language Processing Toolkit to Classify Patient Charts by Psychiatric Diagnosis
  • DOI:
    10.1016/j.jaclp.2023.11.251
  • 发表时间:
    2023-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Alissa Hutto;Tarek Zikry;Terra Rose;Jasmine Staebler;Janet Slay;C Ray Cheever;Michael Kosorok;Rebekah Nash
  • 通讯作者:
    Rebekah Nash

Michael Kosorok的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Kosorok', 18)}}的其他基金

Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
  • 批准号:
    2210659
  • 财政年份:
    2022
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Support Vector Machines for Censored Data
用于审查数据的支持向量机
  • 批准号:
    1407732
  • 财政年份:
    2014
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
REU Site-Summer Research Program in Biostatistics
REU 站点-生物统计学夏季研究计划
  • 批准号:
    0139160
  • 财政年份:
    2002
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347992
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
NSFGEO-NERC: Collaborative Research: Exploring AMOC controls on the North Atlantic carbon sink using novel inverse and data-constrained models (EXPLANATIONS)
NSFGEO-NERC:合作研究:使用新颖的逆向模型和数据约束模型探索 AMOC 对北大西洋碳汇的控制(解释)
  • 批准号:
    2347991
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346198
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: A Novel Laboratory Approach for Exploring Contact Ice Nucleation
合作研究:探索接触冰核的新实验室方法
  • 批准号:
    2346197
  • 财政年份:
    2024
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Versatile Data Synchronization: Novel Codes and Algorithms for Practical Applications
合作研究:CIF:小型:多功能数据同步:实际应用的新颖代码和算法
  • 批准号:
    2312872
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: IHBEM: The fear of here: Integrating place-based travel behavior and detection into novel infectious disease models
合作研究:IHBEM:这里的恐惧:将基于地点的旅行行为和检测整合到新型传染病模型中
  • 批准号:
    2327797
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Developing and Harnessing the Platform of Quasi-One-Dimensional Topological Materials for Novel Functionalities and Devices
合作研究:DMREF:开发和利用用于新功能和器件的准一维拓扑材料平台
  • 批准号:
    2324033
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Enhanced Photolysis and Advanced Oxidation Processes by Novel KrCl* (222 nm) Irradiation
合作研究:通过新型 KrCl* (222 nm) 辐照增强光解和高级氧化过程
  • 批准号:
    2310137
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Magnetic Clustering using Novel Poly(amino acid) Corrals to Advance Magnetic Particle Imaging
合作研究:利用新型聚氨基酸畜栏进行磁聚类以推进磁粒子成像
  • 批准号:
    2305404
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
  • 批准号:
    2219796
  • 财政年份:
    2023
  • 资助金额:
    $ 10万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了