Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
基本信息
- 批准号:2210659
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-15 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Precision medicine seeks to optimize the medical treatments tailored to individual characteristics, including genetic features, demographic information, environmental factors, etc. Individualized treatment rule formalizes the process of decision making that translates the patients’ information into the recommended treatment, and a dynamic treatment regime consists of the sequence of individualized treatment decisions for one or more treatment decision times. Meanwhile, recent developments in medical imaging technologies dramatically affect disease and health studies. Biomedical imaging and imaging-guided interventions are key in the infrastructure for precision medicine. It is of great importance to developing an approach for incorporating imaging data along with other abundant information in precision medicine research. However, the current exploration for these aforementioned abundant features in precision medicine study is far from sufficient. Motivated by this, the project targets to build the statistical analysis framework in precision medicine incorporating abundant features and provide the support of data-driven decision making, which will not enrich statistical methodological studies but provide an integrated early diagnosis tool and an informative tool to guide treatment and lifestyle intervention in health science. In addition, the project will provide training and support for graduate students, as well as instructions in both undergraduate- and graduate-level courses.The PIs will adapt the Q-learning, semiparametric learning, functional data analysis, and reinforcement learning frameworks to precision medicine with abundant features, including medical images, genetic features, demographic information, environmental factors, etc. Focusing on different scenarios, this research program consists of three components: (i) functional individualized treatment regime study incorporating abundant features, along with the development of a novel basis expansion tool to handle the multi-dimensional image feature; (ii) generalized functional individualized treatment regime study incorporating abundant features, which allows the response variable discrete; and (iii) functional Q-learning with abundant features, which extends the methodology to the multi-stage decision setting. The investigators will conduct the theoretical developments, develop efficient algorithms, and implement and apply the tools to real-world data for all these components in this project. From the statistical point of view, the theoretical explorations will yield more insights into semiparametric and reinforcement learning in precision medicine with abundant features. From the computational point of view, efficient and scalable algorithms will be developed and implemented in a form of publicly available software.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
精准医疗旨在优化针对个体特征(包括遗传特征、人口统计信息、环境因素等)的医学治疗。个体化治疗规则将决策过程形式化,将患者的信息转化为推荐的治疗,动态治疗方案由一个或多个治疗决策时间的个体化治疗决策序列组成。与此同时,医学成像技术的最新发展极大地影响了疾病和健康研究。生物医学成像和成像引导干预是精准医疗基础设施的关键。在精确医学研究中,发展一种将成像数据与其他丰富信息沿着的方法是非常重要的。然而,目前在精准医学研究中对这些丰富特征的探索还远远不够。基于此,该项目旨在构建具有丰富特征的精准医学统计分析框架,并提供数据驱动的决策支持,这不会丰富统计方法学研究,而是提供一个集成的早期诊断工具和指导健康科学治疗和生活方式干预的信息工具。此外,该项目还将为研究生提供培训和支持,以及本科和研究生课程的指导。PI将使Q学习,半参数学习,功能数据分析和强化学习框架适应具有丰富特征的精准医学,包括医学图像,遗传特征,人口统计信息,环境因素等。该研究计划由三个部分组成:(i)结合丰富特征的功能性个体化治疗方案研究,沿着新的基础扩展工具的开发以处理多维图像特征;(ii)结合丰富特征的广义功能性个体化治疗方案研究,其允许响应变量离散;(3)具有丰富特征的函数Q学习,将该方法扩展到多阶段决策问题。研究人员将进行理论开发,开发高效的算法,并将这些工具实施并应用于该项目中所有这些组件的真实数据。从统计学的角度,理论上的探索将产生更多的见解半参数和强化学习在精准医学具有丰富的功能。从计算的角度来看,高效和可扩展的算法将被开发和实施的一种形式的公开软件。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Kosorok其他文献
Gene signatures derived from transcriptomic-causal networks stratify colorectal cancer patients for effective targeted therapy
- DOI:
10.1038/s43856-024-00728-z - 发表时间:
2025-01-08 - 期刊:
- 影响因子:6.300
- 作者:
Akram Yazdani;Heinz-Josef Lenz;Gianluigi Pillonetto;Raul Mendez-Giraldez;Azam Yazdani;Hanna Sanoff;Reza Hadi;Esmat Samiei;Alan P. Venook;Mark J. Ratain;Naim Rashid;Benjamin G. Vincent;Xueping Qu;Yujia Wen;Michael Kosorok;William F. Symmans;John Paul Y. C. Shen;Michael S. Lee;Scott Kopetz;Andrew B. Nixon;Monica M. Bertagnolli;Charles M. Perou;Federico Innocenti - 通讯作者:
Federico Innocenti
Using a Natural Language Processing Toolkit to Classify Patient Charts by Psychiatric Diagnosis
- DOI:
10.1016/j.jaclp.2023.11.251 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:
- 作者:
Alissa Hutto;Tarek Zikry;Terra Rose;Jasmine Staebler;Janet Slay;C Ray Cheever;Michael Kosorok;Rebekah Nash - 通讯作者:
Rebekah Nash
Michael Kosorok的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Kosorok', 18)}}的其他基金
Support Vector Machines for Censored Data
用于审查数据的支持向量机
- 批准号:
1407732 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: Novel methods for pharmacogenomic data analysis using gene clusters
合作研究:使用基因簇进行药物基因组数据分析的新方法
- 批准号:
0904184 - 财政年份:2009
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
REU Site-Summer Research Program in Biostatistics
REU 站点-生物统计学夏季研究计划
- 批准号:
0139160 - 财政年份:2002
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Semiparametric and Reinforcement Learning for Precision Medicine
协作研究:精准医学的半参数和强化学习
- 批准号:
2210658 - 财政年份:2022
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
- 批准号:
1507078 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Smoothing Spline Semiparametric Density Models
合作研究:平滑样条半参数密度模型
- 批准号:
1507620 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
- 批准号:
1459967 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Flexible and Robust Data-driven Inference in Nonparametric and Semiparametric Econometrics
协作研究:非参数和半参数计量经济学中灵活且稳健的数据驱动推理
- 批准号:
1459931 - 财政年份:2015
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric ODE Models for Complex Gene Regulatory Networks
合作研究:复杂基因调控网络的半参数 ODE 模型
- 批准号:
1418202 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric ODE Models for Complex Gene Regulatory Networks
合作研究:复杂基因调控网络的半参数 ODE 模型
- 批准号:
1418172 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric conditional graphical models with applications to gene network analysis
合作研究:半参数条件图模型及其在基因网络分析中的应用
- 批准号:
1106815 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Collaborative Research: Non-Standard Asymptotic Theory for Semiparametric Estimators
合作研究:半参数估计的非标准渐近理论
- 批准号:
1124174 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Collaborative Research: Semiparametric Conditional Graphical Models with Applications to Gene Network Analysis
合作研究:半参数条件图形模型及其在基因网络分析中的应用
- 批准号:
1107025 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant