RI: Medium: Collaborative Research: Robotic Hands: Understanding & Implementing Adaptive Grasping

RI:媒介:协作研究:机械手:理解

基本信息

  • 批准号:
    0904514
  • 负责人:
  • 金额:
    $ 41.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project is defining the basis for lower-complexity robotic hands that can grasp a wide variety of objects in noisy and unstructured environments. The new generation of mobile and humanoid robots still lacks basic ?hands? that can reliably grasp objects. Robot hands have been traditionally built as anthropomorphic, high degree-of-freedom (DOF) mechanisms that are expensive and difficult to control. The research team is developing technologies based on defining hand mechanisms that capture two key features of human grasping, versatility and low dimensionality of hand postures. Reducing complexity brings major benefits. Determining the minimal number of hand joints, sensors and actuators can reduce costs and speed research as low-complexity hands can be easily fabricated, designs can be quickly iterated, and control can be simplified. These ideas are used to build a low-cost, low DOF grasping device that is based on hard human grasping data. Further, the new hand designs are being tested in simulation so as to build hardware that is functionally proven for robotic grasping tasks. Important research outcomes include: development of a new low-dimensional, low-cost robotic hand; experiments to gain insights from human grasping and adaptive compliance; and machine learning algorithms for grasping. Broader impacts include: collaboration between neuroscience and robotics; hardware design methods and computational tools for hand researchers; providing robust grasping capabilities in real environments such as robots for home care and assistance for the elderly and disabled; establishing links between neural control and prosthetic devices based on dimensionality reduction; and dissemination of modeling and simulation grasping software.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目正在定义低复杂度机器人手的基础,这些机器人手可以在嘈杂和非结构化的环境中抓取各种各样的物体。新一代的移动的和人形机器人仍然缺乏基本的?手?能够可靠地抓取物体。传统上,机器人手被构建为拟人的、高自由度(DOF)的机构,其昂贵且难以控制。该研究小组正在开发基于定义手部机制的技术,这些机制捕捉了人类抓握的两个关键特征,即手部姿势的多功能性和低维度。降低复杂性带来了巨大的好处。确定手部关节、传感器和致动器的最小数量可以降低成本并加速研究,因为低复杂度的手部可以很容易地制造,设计可以快速迭代,控制可以简化。这些想法是用来建立一个低成本,低自由度的抓取设备,是基于硬人类抓取数据。此外,新的手部设计正在模拟中进行测试,以便构建功能上经过验证的机器人抓取任务的硬件。重要的研究成果包括:开发一种新的低维,低成本的机器人手;实验,以获得人类抓取和自适应顺应性的见解;和抓取的机器学习算法。更广泛的影响包括:这些活动包括:神经科学和机器人技术之间的合作;手部研究人员的硬件设计方法和计算工具;在真实的环境中提供强大的抓取能力,如用于家庭护理和帮助老年人和残疾人的机器人;在神经控制和基于降维的假肢设备之间建立联系;以及传播建模和模拟抓取软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Allen其他文献

On the Number of Orientations of Random Graphs with No Directed Cycles of a Given Length
关于给定长度无向环的随机图的方向数
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Peter Allen;Y. Kohayakawa;G. Mota;Roberto F. Parente
  • 通讯作者:
    Roberto F. Parente
Partitioning a 2-edge-coloured graph of minimum degree math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e315" altimg="si8.svg" class="math"mrowmn2/mnmin/mimo//momn3/mnmo linebreak="goodbreak" linebreakstyle="after"+/momio/mimrowmo(/momin/mimo)/mo/mrow/mrow/math into three monochromatic cycles
将一个最小度为 3 的双色边图划分成三个单色圈。
  • DOI:
    10.1016/j.ejc.2023.103838
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Peter Allen;Julia Böttcher;Richard Lang;Jozef Skokan;Maya Stein
  • 通讯作者:
    Maya Stein
Minimum degree conditions for large subgraphs
大子图的最小度条件
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Peter Allen;Julia Böttcher;J. Hladký;Oliver Cooley
  • 通讯作者:
    Oliver Cooley
A robust Corrádi–Hajnal theorem
稳健的 Corrádi–Hajnal 定理
  • DOI:
    10.1002/rsa.21209
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Peter Allen;Julia Böttcher;Jan Corsten;Ewan Davies;Matthew Jenssen;Patrick Morris;Barnaby Roberts;Jozef Skokan
  • 通讯作者:
    Jozef Skokan
Almost every 2-SAT function is unate
  • DOI:
    10.1007/s11856-007-0081-z
  • 发表时间:
    2007-10-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Peter Allen
  • 通讯作者:
    Peter Allen

Peter Allen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Allen', 18)}}的其他基金

The sparse hypergraph regularity method
稀疏超图正则方法
  • 批准号:
    EP/P032125/1
  • 财政年份:
    2018
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Research Grant
Born politicians? Testing multiple explanations of political ambition in Britain.
天生政治家?
  • 批准号:
    ES/N002644/2
  • 财政年份:
    2017
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Research Grant
NRI: Collaborative Research: Multimodal Brain Computer Interface for Human-Robot Interaction
NRI:协作研究:用于人机交互的多模式脑机接口
  • 批准号:
    1527747
  • 财政年份:
    2016
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Born politicians? Testing multiple explanations of political ambition in Britain.
天生政治家?
  • 批准号:
    ES/N002644/1
  • 财政年份:
    2016
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Research Grant
NRI-Small: Collaborative Research: Assistive Robotics for Grasping and Manipulation using Novel Brain Computer Interfaces
NRI-Small:协作研究:使用新型脑机接口进行抓取和操作的辅助机器人
  • 批准号:
    1208153
  • 财政年份:
    2012
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
RI: Small: Dexterous Manipulation Using Predictive Thin-Shell Modeling
RI:小:使用预测薄壳建模进行灵巧操纵
  • 批准号:
    1217904
  • 财政年份:
    2012
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Collaborative Research: ITR: A Robotics-Based Computational Environment to Simulate the Human Hand
合作研究:ITR:基于机器人的模拟人手的计算环境
  • 批准号:
    0312693
  • 财政年份:
    2003
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
ITR/AP+IM: Computational Tools for Modeling, Visualizing and Analyzing Historic and Archaeological Sites
ITR/AP IM:用于对历史和考古遗址进行建模、可视化和分析的计算工具
  • 批准号:
    0121239
  • 财政年份:
    2001
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Continuing Grant
CISE Research Instrumentaion: Acquisition of a Mobile Robot Scanning System
CISE Research Instrumentaion:采购移动机器人扫描系统
  • 批准号:
    9729844
  • 财政年份:
    1997
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
CISE Research Instrumentation: Acquisition of a Rapid Prototyping System
CISE 研究仪器:购买快速原型系统
  • 批准号:
    9529346
  • 财政年份:
    1996
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 41.94万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了