RI: Medium: Collaborative Research: Robotic Hands: Understanding and Implementing Adaptive Grasping

RI:媒介:协作研究:机器人手:理解和实施自适应抓取

基本信息

  • 批准号:
    0904504
  • 负责人:
  • 金额:
    $ 23.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). This project is defining the basis for lower-complexity robotic hands that can grasp a wide variety of objects in noisy and unstructured environments. The new generation of mobile and humanoid robots still lacks basic ?hands? that can reliably grasp objects. Robot hands have been traditionally built as anthropomorphic, high degree-of-freedom (DOF) mechanisms that are expensive and difficult to control. The research team is developing technologies based on defining hand mechanisms that capture two key features of human grasping, versatility and low dimensionality of hand postures. Reducing complexity brings major benefits. Determining the minimal number of hand joints, sensors and actuators can reduce costs and speed research as low-complexity hands can be easily fabricated, designs can be quickly iterated, and control can be simplified. These ideas are used to build a low-cost, low DOF grasping device that is based on hard human grasping data. Further, the new hand designs are being tested in simulation so as to build hardware that is functionally proven for robotic grasping tasks. Important research outcomes include: development of a new low-dimensional, low-cost robotic hand; experiments to gain insights from human grasping and adaptive compliance; and machine learning algorithms for grasping. Broader impacts include: collaboration between neuroscience and robotics; hardware design methods and computational tools for hand researchers; providing robust grasping capabilities in real environments such as robots for home care and assistance for the elderly and disabled; establishing links between neural control and prosthetic devices based on dimensionality reduction; and dissemination of modeling and simulation grasping software.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目正在定义低复杂度机器人手的基础,这些机器人手可以在嘈杂和非结构化的环境中抓取各种各样的物体。新一代的移动的和人形机器人仍然缺乏基本的?手?能够可靠地抓取物体。传统上,机器人手被构建为拟人的、高自由度(DOF)的机构,其昂贵且难以控制。该研究小组正在开发基于定义手部机制的技术,这些机制捕捉了人类抓握的两个关键特征,即手部姿势的多功能性和低维度。降低复杂性带来了巨大的好处。确定手部关节、传感器和致动器的最小数量可以降低成本并加速研究,因为低复杂度的手部可以很容易地制造,设计可以快速迭代,控制可以简化。这些想法是用来建立一个低成本,低自由度的抓取设备,是基于硬人类抓取数据。此外,新的手部设计正在模拟中进行测试,以便构建功能上经过验证的机器人抓取任务的硬件。重要的研究成果包括:开发一种新的低维,低成本的机器人手;实验,以获得人类抓取和自适应顺应性的见解;和抓取的机器学习算法。更广泛的影响包括:这些活动包括:神经科学和机器人技术之间的合作;手部研究人员的硬件设计方法和计算工具;在真实的环境中提供强大的抓取能力,如用于家庭护理和帮助老年人和残疾人的机器人;在神经控制和基于降维的假肢设备之间建立联系;以及传播建模和模拟抓取软件。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Marco Santello其他文献

Deep Learning Detection of Hand Motion During Microvascular Anastomosis Simulations Performed by Expert Cerebrovascular Neurosurgeons
  • DOI:
    10.1016/j.wneu.2024.09.069
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Thomas J. On;Yuan Xu;Jiuxu Chen;Nicolas I. Gonzalez-Romo;Oscar Alcantar-Garibay;Jay Bhanushali;Wonhyoung Park;John E. Wanebo;Andrew W. Grande;Rokuya Tanikawa;Dilantha B. Ellegala;Baoxin Li;Marco Santello;Michael T. Lawton;Mark C. Preul
  • 通讯作者:
    Mark C. Preul
Behavioral evidence for motor learning and transfer without visual feedback
无视觉反馈的运动学习和迁移的行为证据
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryuta Kitani;Jiajia Yang;Yinghua Yu;Akinori Kunita;Satoshi Takahashi;Jinlong Wu;Qiushi Fu;Marco Santello
  • 通讯作者:
    Marco Santello
Extending kinematic decoding approaches to kinetics
将运动学解码方法扩展到动力学
  • DOI:
    10.1016/j.plrev.2025.03.007
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    14.300
  • 作者:
    Marco Santello
  • 通讯作者:
    Marco Santello
‘I Said I’m Young You Know I Can Plan Something Good You Know’: Understanding Language and Migration Through Time
“我说我还年轻,你知道我可以计划一些好事情,你知道”:随着时间的推移理解语言和迁徙
  • DOI:
    10.1093/applin/amae031
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Marco Santello
  • 通讯作者:
    Marco Santello
Neuroimaging evidence for tactile object recognition
触觉物体识别的神经影像证据
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ryuta Kitani;Jiajia Yang;Yinghua Yu;Akinori Kunita;Satoshi Takahashi;Jinlong Wu;Qiushi Fu;Marco Santello;Jiajia Yang
  • 通讯作者:
    Jiajia Yang

Marco Santello的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Marco Santello', 18)}}的其他基金

IUCRC Phase II ASU: Building Reliable Advances and Innovations in Neurotechnology (BRAIN)
IUCRC 第二阶段 ASU:在神经技术 (BRAIN) 领域建立可靠的进步和创新
  • 批准号:
    2137272
  • 财政年份:
    2022
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Effector and Task Neural Representations of Hand-Object Interactions
协作研究:手-物体交互的效应器和任务神经表征
  • 批准号:
    1827752
  • 财政年份:
    2018
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
I/UCRC for Building Reliable Advances and Innovation in Neurotechnology (BRAIN)
I/UCRC 致力于神经技术 (BRAIN) 领域的可靠进步和创新
  • 批准号:
    1650566
  • 财政年份:
    2017
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Sensorimotor control of hand-object interactions
合作研究:手与物体交互的感觉运动控制
  • 批准号:
    1455866
  • 财政年份:
    2015
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Planning Grant: Collaborative Research: I/UCRC for Building Reliable Advances and Innovation in Neurotechnology (BRAIN)
规划资助:合作研究:I/UCRC 建立神经技术的可靠进步和创新 (BRAIN)
  • 批准号:
    1539979
  • 财政年份:
    2015
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Sensory Integration and Sensorimotor Transformations for Dexterous Manipulation
合作研究:灵巧操作的感觉统合和感觉运动转化
  • 批准号:
    1153034
  • 财政年份:
    2012
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dextrous Control of Multi-Digit Grasping
协作研究:多手指抓取的灵巧控制
  • 批准号:
    0819547
  • 财政年份:
    2008
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordination of Multi-Digit Forces During Grasping
协作研究:抓取过程中多手指力量的协调
  • 批准号:
    0519152
  • 财政年份:
    2006
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313151
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312840
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313149
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Continuing Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312374
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
  • 批准号:
    2312373
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
  • 批准号:
    2312955
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
  • 批准号:
    2313150
  • 财政年份:
    2023
  • 资助金额:
    $ 23.6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了