Collaborative Research: Neural and computational models of spatio-temporally varying natural scenes

合作研究:时空变化的自然场景的神经和计算模型

基本信息

  • 批准号:
    0904875
  • 负责人:
  • 金额:
    $ 17.34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-10-01 至 2012-09-30
  • 项目状态:
    已结题

项目摘要

As we move through our visual environment, the pattern of light that enters our eyes is strongly shaped by the properties of objects within the environment, their motion relative to each other, and our own motion relative to the external world. This collaborative project will quantify motion within natural scenes, record activity from populations of neurons in the early visual pathway in response to the motion, and develop models of motion representation across neuronal populations. The primary goals of the work are to fully characterize the biological representation of motion in natural scenes in the early stages of visual processing that sets the stage for cortical computation critical for visual perception, and to unify the biological findings with computational models of motion from the computer vision community. The perception of visual motion is critical for both biological and computer vision systems. Motion reveals structure of the world including the relative and absolute depths of objects, surface boundaries between objects and information about ego-motion and the independent motion of other objects. The effects of visual motion on the relationship between spatially localized and global properties of the natural visual scene, and how this is represented by the early visual pathway of the brain, are largely unknown. This project addresses the computation of local and global properties of natural visual scenes by both distributed neural systems and computer vision algorithms using a novel set of complex naturalistic stimuli in which ground truth properties of the scene are known, and all aspects of the scene, including its reflectance, surface properties, lighting and motion are under investigator control. A unified probabilistic modeling framework will be adopted, that ties together the computational and biological models of properties of the natural scene. Neural activity will be recorded from a large population of densely sampled single neurons from the visual thalamus. From the perspective of the computer vision community, an important challenge exists in inferring the motion of the external environment (or "optical flow") from sequences of 2D images. From the perspective of the neuroscience community, quantifying the distributed neural representation of luminance and motion in the early visual pathway will be a critical step in understanding how scene information is extracted and prepared for processing in higher visual centers. A team of investigators with experience in computer science, engineering, and neuroscience will develop a theoretical foundation and rich set of methods for the representation and recovery of local luminance, local motion boundaries and global motion by brains and machines.
当我们在我们的视觉环境中移动时,进入我们眼睛的光的模式强烈地受到环境中物体的特性、它们相对于彼此的运动以及我们自身相对于外部世界的运动的影响。这个合作项目将量化自然场景中的运动,记录早期视觉通路中神经元群体对运动的反应活动,并开发跨神经元群体的运动表示模型。这项工作的主要目标是在视觉处理的早期阶段充分描述自然场景中运动的生物表征,为对视觉感知至关重要的皮质计算奠定基础,并将生物学发现与计算机视觉社区的运动计算模型统一起来。视觉运动的感知对于生物系统和计算机视觉系统都是至关重要的。运动揭示了世界的结构,包括物体的相对和绝对深度,物体之间的表面边界,以及关于自我运动和其他物体的独立运动的信息。视觉运动对自然视觉场景的空间局部性和全局性之间的关系的影响,以及大脑早期视觉通路是如何表现这一点的,在很大程度上是未知的。该项目利用分布式神经系统和计算机视觉算法,使用一组新的复杂自然刺激来计算自然视觉场景的局部和全局属性,其中场景的地面真实属性是已知的,场景的所有方面,包括其反射率、表面属性、照明和运动都在研究人员的控制之下。将采用统一的概率建模框架,将自然场景属性的计算模型和生物模型联系在一起。神经活动将从大量密集采样的单个神经元中记录下来,这些神经元来自视觉丘脑。从计算机视觉领域的角度来看,从2D图像序列推断外部环境(或光流)的运动是一个重要的挑战。从神经科学界的角度来看,量化早期视觉通路中亮度和运动的分布式神经表征将是理解场景信息是如何被提取并准备在高级视觉中心进行处理的关键步骤。一组在计算机科学、工程和神经科学方面有经验的研究人员将开发一套理论基础和丰富的方法,用于用大脑和机器来表示和恢复局部亮度、局部运动边界和全局运动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Black其他文献

Chronology-Sensitive Hierarchical Clustering of Pyrosequenced DNA Samples of E. coli: A Case Study
大肠杆菌焦磷酸测序 DNA 样本的时间敏感层次聚类:案例研究
Changes in the cell wall accompanying drying and maturation determine the ease of isolation of protoplasts from wheat aleurone layers
  • DOI:
    10.1007/bf00232636
  • 发表时间:
    1994-03-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Mireya Rodriguez-Penagos;Michael Black
  • 通讯作者:
    Michael Black
OpenCapBench: A Benchmark to Bridge Pose Estimation and Biomechanics
OpenCapBench:连接姿势估计和生物力学的基准
  • DOI:
    10.48550/arxiv.2406.09788
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yoni Gozlan;Antoine Falisse;S. Uhlrich;Anthony Gatti;Michael Black;Akshay Chaudhari
  • 通讯作者:
    Akshay Chaudhari
Evaluation of gene expression changes in human primary uroepithelial cells following 24‐Hr exposures to inorganic arsenic and its methylated metabolites
24小时暴露于无机砷及其甲基化代谢物后人原代尿路上皮细胞基因表达变化的评估
  • DOI:
    10.1002/em.21749
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    J. Yager;P. Gentry;Russell S. Thomas;L. Pluta;A. Efremenko;Michael Black;L. Arnold;J. Mckim;P. Wilga;G. Gill;Key‐Young Choe;H. Clewell
  • 通讯作者:
    H. Clewell
Clinical Quality Is Independently Associated With Favorable Bond Ratings
临床质量与良好的债券评级独立相关
  • DOI:
    10.1177/1062860609354915
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    1.4
  • 作者:
    Z. Haydar;D. Nicewander;P. Convery;Michael Black;D. Ballard
  • 通讯作者:
    D. Ballard

Michael Black的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Black', 18)}}的其他基金

A Graphical Full System Simulator for Undergraduate Computer Architecture Education
用于本科计算机体系结构教育的图形化完整系统模拟器
  • 批准号:
    0941057
  • 财政年份:
    2010
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
RI-Small: Human Shape and Pose from Images
RI-Small:图像中的人体形状和姿势
  • 批准号:
    0812364
  • 财政年份:
    2008
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Continuing Grant
U.S.-Uruguay Workshop: Vision in Brains and Machines, Montevideo, Uruguay, November, 2006
美国-乌拉圭研讨会:大脑和机器中的视觉,乌拉圭蒙得维的亚,2006 年 11 月
  • 批准号:
    0624015
  • 财政年份:
    2006
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Learning Rich Statistical Models of the Visual World for Robust Perception
学习丰富的视觉世界统计模型以实现稳健的感知
  • 批准号:
    0535075
  • 财政年份:
    2005
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Continuing Grant
ITR/Comp Bio: The Computer Science of Biologically Embedded Systems
ITR/Comp Bio:生物嵌入式系统的计算机科学
  • 批准号:
    0113679
  • 财政年份:
    2001
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333881
  • 财政年份:
    2024
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
  • 批准号:
    2333882
  • 财政年份:
    2024
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
CRCNS US-German Collaborative Research Proposal: Neural and computational mechanisms of flexible goal-directed decision making
CRCNS 美德合作研究提案:灵活目标导向决策的神经和计算机制
  • 批准号:
    2309022
  • 财政年份:
    2024
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312841
  • 财政年份:
    2023
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
  • 批准号:
    2312842
  • 财政年份:
    2023
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
  • 批准号:
    2326895
  • 财政年份:
    2023
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Verifying Deep Neural Networks with Spintronic Probabilistic Computers
合作研究:SHF:中:使用自旋电子概率计算机验证深度神经网络
  • 批准号:
    2311295
  • 财政年份:
    2023
  • 资助金额:
    $ 17.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了