Collaborative Research: SHF: Small: Quasi Weightless Neural Networks for Energy-Efficient Machine Learning on the Edge
合作研究:SHF:小型:用于边缘节能机器学习的准失重神经网络
基本信息
- 批准号:2326895
- 负责人:
- 金额:$ 15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-10-01 至 2026-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep Neural Networks (DNNs) have recently enabled revolutionary advances in a wide variety of tasks, however these deep networks demand large amounts of memory and computation resources. Such demands can be highly difficult (or even impractical) for systems on the edge. Although DNNs are very accurate, the energy consumed by DNNs is orders of magnitude higher than biological neural activities for similar tasks. It is important to reduce the computational and energy demands of machine learning hardware so that inferencing on the edge can become a low-cost, low-energy task. Weightless Neural Networks (WNNs) represent a distinct class of neural models which derive inspiration from the processing of input signals by the dendritic trees of biological neurons. WNNs do not use weights or multiply-add operations to determine their responses. Instead, they rely on value lookups implemented using look-up tables. This project explores small models that are more energy efficient compared to multiplication-and-addition-based deep learning models. WNNs are very promising from the perspective of energy-efficiency, and low latency, and our effort is directed at enabling a myriad of ultra-low energy edge applications otherwise impossible. This project explores low-energy machine learning hardware which combine the benefits of traditional DNNs and the computation-less weightless neural networks. Techniques used include (1) utilizing multi-layer networks and hierarchical networks to create novel weightless neural network architectures, (2) devising novel training algorithms for WNNs utilizing multi-shot training with feedback (3) exploring quasi-weightless neural networks using emerging novel memory technologies, and (4) designing systems for energy-efficient edge intelligence. The collaborative project between the University of Texas and Stanford University innovates across multiple layers of the system stack, including architecture and circuit layers. The collaborative activity between the University of Texas and Stanford involves many underrepresented communities from a STEM perspective, including minority and women, undergrads, and first-generation college students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络(DNN)最近在各种任务中取得了革命性的进展,但这些深度网络需要大量的内存和计算资源。对于边缘系统来说,这样的要求可能非常困难(甚至不切实际)。虽然DNN非常准确,但DNN消耗的能量比类似任务的生物神经活动高出几个数量级。 重要的是要减少机器学习硬件的计算和能源需求,以便边缘推理可以成为低成本,低能耗的任务。无权重神经网络(Weightless Neural Networks,WNN)是一类独特的神经模型,其灵感来自于生物神经元的树突树对输入信号的处理。 WNN不使用权重或乘加运算来确定其响应。相反,它们依赖于使用查找表实现的值查找。 该项目探索了与基于乘法和加法的深度学习模型相比更节能的小型模型。从能源效率和低延迟的角度来看,WNN非常有前途,我们的努力旨在实现无数的超低能耗边缘应用。该项目探索低能耗机器学习硬件,联合收割机了传统DNN和计算量较小的无重量神经网络的优点。 所使用的技术包括:(1)利用多层网络和分层网络来创建新的无重量神经网络架构;(2)利用带反馈的多次训练为WNN设计新的训练算法;(3)使用新兴的新型存储器技术探索准无重量神经网络;以及(4)设计节能边缘智能系统。德克萨斯大学和斯坦福大学之间的合作项目跨越系统堆栈的多个层进行创新,包括架构和电路层。德克萨斯大学和斯坦福大学之间的合作活动涉及许多从STEM角度来看代表性不足的社区,包括少数民族和妇女,本科生和第一代大学生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估而被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Subhasish Mitra其他文献
Dendrite-inspired Computing to Improve Resilience of Neural Networks to Faults in Emerging Memory Technologies
树突启发计算可提高神经网络对新兴内存技术故障的恢复能力
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
L. K. John;F. M. G. França;Subhasish Mitra;Zachary Susskind;P. M. V. Lima;Igor D. S. Miranda;E. B. John;Diego L. C. Dutra;M. Breternitz - 通讯作者:
M. Breternitz
Segregation of a Phosphorus Rich Phase During Differential Solidification of BOF Slag
- DOI:
10.1007/s11663-022-02586-3 - 发表时间:
2022-07-06 - 期刊:
- 影响因子:3.100
- 作者:
Thi Bang Tuyen Nguyen;Subhasish Mitra;Geoffrey M. Evans;Hamid Doostmohammadi;Brian J. Monaghan;Paul Zulli;Kyoung-oh Jang;Damien O’Dea;Tom Honeyands - 通讯作者:
Tom Honeyands
Measurement of gas dispersion parameters in a reflux flotation cell
回流浮选槽中气体分散参数的测量
- DOI:
10.1016/j.mineng.2025.109526 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:5.000
- 作者:
Abdullaziz Glabe Zakari;Raju Chowdhury;Peter Ireland;Geoffrey Evans;Subhasish Mitra - 通讯作者:
Subhasish Mitra
Effect of bubble surface loading on bubble rise velocity
- DOI:
10.1016/j.mineng.2021.107252 - 发表时间:
2021-12-01 - 期刊:
- 影响因子:
- 作者:
Ai Wang;Mohammad Mainul Hoque;Roberto Moreno-Atanasio;Elham Doroodchi;Geoffrey Evans;Subhasish Mitra - 通讯作者:
Subhasish Mitra
Cooling future system-on-chips with diamond inter-tiers
使用金刚石中间层冷却未来片上系统
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:8.9
- 作者:
M. Malakoutian;Anna Kasperovich;Dennis Rich;Kelly Woo;Christopher Perez;R. Soman;Devansh Saraswat;Jeong;Maliha Noshin;Michelle Chen;Sam Vaziri;Xinyu Bao;Che Chi Shih;W. Woon;M. Asheghi;Kenneth E. Goodson;S. Liao;Subhasish Mitra;Srabanti Chowdhury - 通讯作者:
Srabanti Chowdhury
Subhasish Mitra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Subhasish Mitra', 18)}}的其他基金
FuSe-TG: The Future of Semiconductor Technologies for Computing through Device-Architecture-Application Co-Design
FuSe-TG:通过设备-架构-应用协同设计进行计算的半导体技术的未来
- 批准号:
2235329 - 财政年份:2023
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
E2CDA: Type I: Collaborative Research: Energy Efficient Learning Machines (ENIGMA)
E2CDA:类型 I:协作研究:节能学习机 (ENIGMA)
- 批准号:
1640078 - 财政年份:2016
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Visual Cortex on Silicon
合作研究:硅上视觉皮层
- 批准号:
1317470 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Workshop: Bugs and Defects in Electronic Systems: The Next Frontier
研讨会:电子系统中的错误和缺陷:下一个前沿
- 批准号:
1341270 - 财政年份:2013
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
SHF:Medium:Collaborative Research: AgeELESS: Aging Estimation and Lifetime Enhancement in Silicon Systems
SHF:中:合作研究:AgeELESS:硅系统中的老化估计和寿命增强
- 批准号:
1161332 - 财政年份:2012
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
II-NEW: Robust Carbon Nanotube Technology for Energy-Efficient Computing Systems: A Processing and Design Infrastructure for Emerging Nanotechnologies
II-新:用于节能计算系统的稳健碳纳米管技术:新兴纳米技术的处理和设计基础设施
- 批准号:
1059020 - 财政年份:2011
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Variability-Aware Software for Efficient Computing with Nanoscale Devices
协作研究:利用纳米级设备进行高效计算的可变性感知软件
- 批准号:
1028831 - 财政年份:2010
- 资助金额:
$ 15万 - 项目类别:
Continuing Grant
Collaborative Research: Globally Optimized Robust Systems on Multi-Core Hardware
协作研究:多核硬件上的全局优化鲁棒系统
- 批准号:
0903459 - 财政年份:2009
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: Design, Modeling, Automation and Experimentation of Imperfection Immune Carbon Nanotube Field Effect Transitor Circuits
合作研究:不完美免疫碳纳米管场效应晶体管电路的设计、建模、自动化和实验
- 批准号:
0702343 - 财政年份:2007
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403134 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403408 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
- 批准号:
2403135 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
- 批准号:
2403409 - 财政年份:2024
- 资助金额:
$ 15万 - 项目类别:
Standard Grant