From Frames to Events: A Statistical Approach to Activity Analysis in Multi-Camera Systems
从帧到事件:多摄像机系统中活动分析的统计方法
基本信息
- 批准号:0905541
- 负责人:
- 金额:$ 50.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
From Frames to Events: A Statistical Approach to Activity Analysis in Multi-Camera SystemsVenkatesh Saligrama and Janusz Konrad, Boston University, MA 02215Unlike other sensors, cameras provide excellent resolution, long viewing range,wide field of view and low latency thus permitting pervasive, wide-area visualsurveillance. However, most network cameras deployed today are simplecapture/compression/transmission devices, at most supporting rudimentary motiondetection; all higher-level processing is highly centralized. This centralizedarchitecture stems from human-centric visual analytics as well as limitedin-camera processing capacity, and is not scalable to large multi-camerasystems. With over 30 million surveillance cameras in use in the United Statestoday, that produce 4 billion hours of video footage per week, monitoring byhuman operators is obviously not sustainable. An autonomous, distributed,bandwidth-efficient, real-time video analytics system is needed.This project makes a step towards building such a system. At its core is anovel statistical framework for activity discovery and analysis that departsfrom the centralized model and leverages processing power of camera nodes.While traditional activity analysis operates at object level, e.g., objects areidentified, tracked, and tested for abnormality, methods under development inthis project employ activity analysis at pixel level. If the abnormal activityis reliably identified, then object extraction and tracking focus on region ofinterest and thus are relatively straightforward, on account of absence ofclutter. In order to reliably identify pixel-level abnormalities, or moregenerally activities, a novel event-based video representation is used thatdecomposes video into iid samples lending itself to the application ofstatistical learning. In order to facilitate multi-camera collaboration,geometric invariance of dynamic events is exploited thus bypassing thedifficult issues related to 3-D geometry dependent on viewing angles.
从帧到事件:多摄像机系统活动分析的统计方法波士顿大学,MA 02215与其他传感器不同,摄像机提供出色的分辨率,长可视范围,宽视场和低延迟,从而允许普遍的,广域的视觉监视。然而,今天部署的大多数网络摄像机都是简单的捕获/压缩/传输设备,最多支持基本的运动检测;所有高级处理都是高度集中的。这种集中式架构源于以人为中心的视觉分析以及有限的相机处理能力,并且无法扩展到大型多相机系统。目前,美国有超过3000万个监控摄像头在使用,每周产生40亿小时的视频片段,人工监控显然是不可持续的。需要一个自主的、分布式的、带宽高效的实时视频分析系统。这个项目朝着建立这样一个系统迈出了一步。其核心是用于活动发现和分析的新颖统计框架,该框架脱离了集中式模型,并利用了相机节点的处理能力。传统的活动分析是在对象层面上进行的,例如,对对象进行识别、跟踪和异常测试,而本项目正在开发的方法是在像素层面上进行活动分析。如果异常活动被可靠地识别出来,那么目标提取和跟踪就会集中在感兴趣的区域,因此相对简单,因为没有杂波。为了可靠地识别像素级异常,或更普遍的活动,使用了一种新的基于事件的视频表示,将视频分解为可用于统计学习的id样本。为了促进多摄像机协作,动态事件的几何不变性被利用,从而绕过了依赖于视角的三维几何相关的难题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Venkatesh Saligrama其他文献
A Provably Efficient Algorithm for Separable Topic Discovery
一种可证明有效的可分离主题发现算法
- DOI:
10.1109/jstsp.2016.2555240 - 发表时间:
2016 - 期刊:
- 影响因子:7.5
- 作者:
Weicong Ding;P. Ishwar;Venkatesh Saligrama - 通讯作者:
Venkatesh Saligrama
Outlier detection via localized p-value estimation
通过局部 p 值估计进行异常值检测
- DOI:
10.1109/allerton.2009.5394501 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Manqi Zhao;Venkatesh Saligrama - 通讯作者:
Venkatesh Saligrama
"active Boosted Learning" Active Boosted Learning (actboost)
“主动提升学习”主动提升学习(actboost)
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Venkatesh Saligrama;K. Trapeznikov;D. Castañón - 通讯作者:
D. Castañón
Graph-based Learning with Unbalanced Clusters
具有不平衡集群的基于图的学习
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Jing Qian;Venkatesh Saligrama;Manqi Zhao - 通讯作者:
Manqi Zhao
Broadband Dispersion Extraction Using Simultaneous Sparse Penalization
使用同时稀疏惩罚的宽带色散提取
- DOI:
10.1109/tsp.2011.2160632 - 发表时间:
2011 - 期刊:
- 影响因子:5.4
- 作者:
S. Aeron;S. Bose;H. Valero;Venkatesh Saligrama - 通讯作者:
Venkatesh Saligrama
Venkatesh Saligrama的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Venkatesh Saligrama', 18)}}的其他基金
Collaborative Research: CIF: Small: Learning from Multiple Biased Sources
合作研究:CIF:小型:从多个有偏见的来源学习
- 批准号:
2007350 - 财政年份:2020
- 资助金额:
$ 50.74万 - 项目类别:
Standard Grant
CPS: Synergy: Data Driven Intelligent Controlled Sensing for Cyber Physical Systems
CPS:协同:网络物理系统的数据驱动智能控制传感
- 批准号:
1330008 - 财政年份:2013
- 资助金额:
$ 50.74万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: A Unifying Approach for Identification of Sparse Interactions in Large Datasets
CIF:小型:协作研究:识别大型数据集中稀疏交互的统一方法
- 批准号:
1320566 - 财政年份:2013
- 资助金额:
$ 50.74万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: The Foundations of Implicit and Explicit Communication in Cyberphysical Systems
CPS:媒介:协作研究:网络物理系统中隐式和显式通信的基础
- 批准号:
0932114 - 财政年份:2009
- 资助金额:
$ 50.74万 - 项目类别:
Standard Grant
Workshop on Networked Sensing, Information and Control; Boston, MA, Winter 2006
网络传感、信息和控制研讨会;
- 批准号:
0548822 - 财政年份:2005
- 资助金额:
$ 50.74万 - 项目类别:
Standard Grant
CAREER: A Systems Approach to Networked Decision Making in Uncertain Environments
职业:不确定环境中网络决策的系统方法
- 批准号:
0449194 - 财政年份:2005
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Continuing Grant
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
- 批准号:
10660281 - 财政年份:2023
- 资助金额:
$ 50.74万 - 项目类别:
Statistical Methodology for Multiple Events in Time and Space
时空多事件的统计方法
- 批准号:
RGPIN-2018-04799 - 财政年份:2022
- 资助金额:
$ 50.74万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for the Analysis of Recurrent Events and Event History Data
分析重复事件和事件历史数据的统计方法
- 批准号:
RGPIN-2015-06152 - 财政年份:2021
- 资助金额:
$ 50.74万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methodology for Multiple Events in Time and Space
时空多事件的统计方法
- 批准号:
RGPIN-2018-04799 - 财政年份:2021
- 资助金额:
$ 50.74万 - 项目类别:
Discovery Grants Program - Individual
Statistical Methods for Repeated Events
重复事件的统计方法
- 批准号:
RGPIN-2016-05182 - 财政年份:2021
- 资助金额:
$ 50.74万 - 项目类别:
Discovery Grants Program - Individual
A Statistical Network Pharmacology Approach for Early Detection of Adverse Drug Events
用于早期检测药物不良事件的统计网络药理学方法
- 批准号:
10185087 - 财政年份:2021
- 资助金额:
$ 50.74万 - 项目类别:
A Statistical Network Pharmacology Approach for Early Detection of Adverse Drug Events
用于早期检测药物不良事件的统计网络药理学方法
- 批准号:
10698127 - 财政年份:2021
- 资助金额:
$ 50.74万 - 项目类别:
Statistical Methodology for Multiple Events in Time and Space
时空多事件的统计方法
- 批准号:
RGPIN-2018-04799 - 财政年份:2020
- 资助金额:
$ 50.74万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




