Connections between Khovanov - and Heegaard Floer - type Homology Theories
Khovanov 和 Heegaard Floer 型同调理论之间的联系
基本信息
- 批准号:0905848
- 负责人:
- 金额:$ 12.31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-15 至 2010-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The principal investigator will probe the connection between Heegaard Floer homology and Khovanov homology, two theories, inspired by ideas in physics, that have transformed the landscape of low-dimensional topology during the past decade. The project will focus on one partially-understood connection--namely, the relationship between Khovanov theories of tangles and Heegaard Floer theories of their double-branched covers, first discovered by Peter Ozsvath and Zoltan Szabo and later reinterpreted, using Andras Juhasz's relative version of Heegaard Floer homology for sutured manifolds, by the principal investigator and Stephan Wehrli. The naturality of the connection under various TQFT-type operations suggests a path for developing Khovanov-type invariants for a wider class of objects in low-dimensional topology which should, in turn, yield new applications.The broad aim of the present project is to improve our understanding of the topology of 3- and 4-dimensional spaces, i.e., the properties of these spaces that remain unchanged under stretching and contracting (but not under tearing and gluing). Topological ideas underpin the development of efficient computer chips and information networks. The shapes of molecules and proteins determine their electrical properties and biological functions. Basing quantum computing algorithms on large-scale features of a quantum system minimizes their susceptibility to random error. Moreover, knot theory, the study of loops imbedded in 3-dimensional space, has become increasingly important in our understanding of how DNA behaves in cells.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。首席研究员将探讨Heegaard Floer同源性和Khovanov同源性之间的联系,这两个理论受到物理学思想的启发,在过去十年中改变了低维拓扑的景观。 该项目将专注于一个部分理解的连接-即Khovanov缠结理论和Heegaard Floer双分支覆盖理论之间的关系,首先由Peter Ozsvath和Zoltan Szabo发现,后来重新解释,使用Andras Juhasz的相对版本的Heegaard Floer同调缝合流形,由首席研究员和Stephan Wehrli。 各种TQFT型操作下的连接的自然性表明了一条发展Khovanov型不变量的路径,用于低维拓扑中更广泛的一类对象,这反过来又会产生新的应用。本项目的广泛目标是提高我们对3维和4维空间拓扑的理解,即,这些空间的性质在拉伸和收缩下保持不变(但在撕裂和粘合下不保持不变)。 拓扑思想支撑着高效计算机芯片和信息网络的发展。 分子和蛋白质的形状决定了它们的电学性质和生物学功能。 基于量子系统的大规模特征的量子计算算法最大限度地减少了它们对随机错误的敏感性。 此外,纽结理论(knot theory)--研究嵌入三维空间中的环的理论--在我们理解DNA在细胞中的行为方面变得越来越重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Grigsby其他文献
Julia Grigsby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Grigsby', 18)}}的其他基金
CAREER: Connections between algebraic and geometric invariants in low-dimensional topology
职业:低维拓扑中代数和几何不变量之间的联系
- 批准号:
1151671 - 财政年份:2012
- 资助金额:
$ 12.31万 - 项目类别:
Continuing Grant
Connections between Khovanov - and Heegaard Floer - type Homology Theories
Khovanov 和 Heegaard Floer 型同调理论之间的联系
- 批准号:
1030796 - 财政年份:2009
- 资助金额:
$ 12.31万 - 项目类别:
Standard Grant
相似海外基金
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 12.31万 - 项目类别:
Studentship
Translations between Type Theories
类型理论之间的翻译
- 批准号:
EP/Z000602/1 - 财政年份:2025
- 资助金额:
$ 12.31万 - 项目类别:
Research Grant
Thwarted Identity: The Missing Link Between Psychopathology and Prejudice
受挫的身份:精神病理学与偏见之间缺失的联系
- 批准号:
DP240100108 - 财政年份:2024
- 资助金额:
$ 12.31万 - 项目类别:
Discovery Projects
A Cultural Plutocracy? Transnational families and the consumption of luxury goods in Britain and in France between 1870 and 1930
文化富豪统治?
- 批准号:
2882198 - 财政年份:2024
- 资助金额:
$ 12.31万 - 项目类别:
Studentship
A MISSING LINK between continental shelves and the deep sea: Addressing the overlooked role of land-detached submarine canyons
大陆架和深海之间缺失的联系:解决与陆地无关的海底峡谷被忽视的作用
- 批准号:
NE/X014975/1 - 财政年份:2024
- 资助金额:
$ 12.31万 - 项目类别:
Research Grant
Leveraging the synergy between experiment and computation to understand the origins of chalcogen bonding
利用实验和计算之间的协同作用来了解硫族键合的起源
- 批准号:
EP/Y00244X/1 - 财政年份:2024
- 资助金额:
$ 12.31万 - 项目类别:
Research Grant
Collaborative Research: URoL:ASC: Determining the relationship between genes and ecosystem processes to improve biogeochemical models for nutrient management
合作研究:URoL:ASC:确定基因与生态系统过程之间的关系,以改进营养管理的生物地球化学模型
- 批准号:
2319123 - 财政年份:2024
- 资助金额:
$ 12.31万 - 项目类别:
Standard Grant
CAREER: Quantifying congruences between modular forms
职业:量化模块化形式之间的同余性
- 批准号:
2337830 - 财政年份:2024
- 资助金额:
$ 12.31万 - 项目类别:
Continuing Grant
CAREER: Closing the Loop between Learning and Communication for Assistive Robot Arms
职业:关闭辅助机器人手臂的学习和交流之间的循环
- 批准号:
2337884 - 财政年份:2024
- 资助金额:
$ 12.31万 - 项目类别:
Standard Grant
Collaborative Research: Geophysical and geochemical investigation of links between the deep and shallow volatile cycles of the Earth
合作研究:地球深层和浅层挥发性循环之间联系的地球物理和地球化学调查
- 批准号:
2333102 - 财政年份:2024
- 资助金额:
$ 12.31万 - 项目类别:
Continuing Grant