4-Manifolds, Calibrated Manifolds, Real Algebraic Varieties

4-流形、校准流形、实代数簇

基本信息

  • 批准号:
    0905917
  • 负责人:
  • 金额:
    $ 27.56万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2015-08-31
  • 项目状态:
    已结题

项目摘要

The proposer plans to study topology of smooth 4- manifolds, calibrated manifolds, and real algebraic varieties. The plan to attack to unsolved problems in 4-manifold theory is to decompose 4-manifolds into basic, easy to understand, pieces, which are called Corks, Plugs and Palfs, and study these pieces by applying techniques from complex and symplectic manifold theory. Questions about knottedness and uniqueness of Corks are particularly important in this context. An immediate consequence of these techniques is the construction of exotic Stein manifolds. The P.I. also plans to work on certain classes of 7 and 8 dimensional manifolds (so called G2 and Spin(7) manifolds). By studying the certain families of 3 and 4 dimensional submanifolds in them (so called associative and Cayley submanifolds) the P.I. hopes to get a global understanding of the gauge theories of low dimensional manifolds, and to construct a counting theory for these submanifolds (similar to Gromov-Witten counting theory of holomorphic curves in symplectic manifolds). Also intended is to explain mirror duality in terms of G2 manifolds. Finally the P.I. wants to continue working on the project of topological characterization of real algebraic sets. 4-dimensional manifolds (spaces) appear to decompose into small basic pieces (particles) which we call "Corks" and "Plugs". These pieces determine the exotic structures of the underlying 4-manifold. One can think of corks and plugs as freely moving particles in 4-manifolds like Fermions and Bosons in physics, or little knobs on a wall to turn on and off; the ambient exotic lights in a room. The P.I. plans to study the structure of these Corks and Plugs. The P.I. also plans to study G2 and Spin(7) manifolds (certain 7 and 8 dimensional spaces), which are of current interest in physicists, because they play important role in the String theory and M-theory. The P.I. also plans to work on the problem of determining which topological spaces are algebraic sets. Making a topological space algebraic helps us to understand many of the properties of the space.
提出者计划研究光滑4-流形、校准流形和真实的代数簇的拓扑。解决四维流形理论中尚未解决的问题的计划是将四维流形分解成基本的、易于理解的块,称为Corks、Plug和Palfs,并应用复流形和辛流形理论的技术来研究这些块。在这种情况下,关于软木塞的打结和独特性的问题尤为重要。这些技术的直接后果是建设异国情调的斯坦流形。私家侦探也计划工作的某些类的7和8维流形(所谓的G2和自旋(7)流形)。通过研究其中的某些3维和4维子流形族(所谓结合子流形和Cayley子流形),得到了P.希望能对低维流形的规范理论有一个全面的了解,并为这些子流形建立一个计数理论(类似于辛流形中全纯曲线的Gromov-Witten计数理论)。还打算解释镜像对偶的G2流形。最后,PI 希望继续致力于真实的代数集的拓扑表征项目。4-维流形(空间)似乎分解成小的基本块(粒子),我们称之为“软木塞”和“塞子”。这些部分决定了底层4-流形的奇异结构。人们可以把软木塞和塞子想象成在四维流形中自由移动的粒子,就像物理学中的费米子和玻色子,或者墙上的小旋钮来打开和关闭;房间里的环境异国情调的灯光。私家侦探计划研究这些软木塞的结构。私家侦探还计划研究G2和Spin(7)流形(某些7维和8维空间),这是物理学家目前感兴趣的,因为它们在弦理论和M理论中起着重要作用。私家侦探还计划工作的问题,确定哪些拓扑空间是代数集。使拓扑空间代数化有助于我们理解空间的许多性质。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Selman Akbulut其他文献

A topological resolution theorem
  • DOI:
    10.1007/bf02698689
  • 发表时间:
    1981-12-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Selman Akbulut;Laurence Taylor
  • 通讯作者:
    Laurence Taylor
Exotic rational surfaces without 1-handles
不带 1 控制柄的奇异有理曲面
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selman Akbulut;Kouichi Yasui;Kouichi Yasui;安井弘一;Kouichi Yasui
  • 通讯作者:
    Kouichi Yasui
Computer graphics and minimal surfaces
计算机图形学和最小曲面
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selman Akbulut;安井弘一;Shoichi Fujimori
  • 通讯作者:
    Shoichi Fujimori
Real algebraic structures on topological spaces
Corks and exotic ribbons in $$B^{4}$$
  • DOI:
    10.1007/s40879-022-00581-1
  • 发表时间:
    2022-09-19
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Selman Akbulut
  • 通讯作者:
    Selman Akbulut

Selman Akbulut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Selman Akbulut', 18)}}的其他基金

Exotic 4- Manifolds, and geometric structures
奇异4-流形和几何结构
  • 批准号:
    1505364
  • 财政年份:
    2015
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    1502135
  • 财政年份:
    2015
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
  • 批准号:
    1065879
  • 财政年份:
    2011
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Continuing Grant
Conference - Gokova Geometry/Topology Conference. To be held summer 2010-2014 in Turkey
会议 - Gokova 几何/拓扑会议。
  • 批准号:
    1005366
  • 财政年份:
    2010
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Continuing Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    0707123
  • 财政年份:
    2007
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
4-Manifolds, Calibrated Manifolds, Real Algebraic Varieties
4-流形、校准流形、实代数簇
  • 批准号:
    0505638
  • 财政年份:
    2005
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    0403096
  • 财政年份:
    2004
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
FRG: Topological Invariants of 3 and 4-Manifolds
FRG:3 和 4 流形的拓扑不变量
  • 批准号:
    0244622
  • 财政年份:
    2003
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
Topology of Smooth 4-Manifolds
光滑4流形拓扑
  • 批准号:
    0204579
  • 财政年份:
    2002
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Continuing Grant
Topology of Smooth 4-Manifolds
光滑4流形拓扑
  • 批准号:
    9971440
  • 财政年份:
    1999
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant

相似海外基金

Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Studentship
SBIR Phase II: In-vivo validation of a volume-manufacturable and factory-calibrated wearable NT-proBNP monitoring system for heart failure treatment
SBIR II 期:用于心力衰竭治疗的可批量生产和工厂校准的可穿戴 NT-proBNP 监测系统的体内验证
  • 批准号:
    2335105
  • 财政年份:
    2024
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Cooperative Agreement
CAREER: HCC: Designing Visualizations to Support Critical Thinking and Calibrated Trust in Data
职业:HCC:设计可视化以支持批判性思维和校准数据信任
  • 批准号:
    2237585
  • 财政年份:
    2023
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Continuing Grant
Self-calibrated ionophore-based ion-selective electrodes for at-home measurements of blood electrolytes
用于家庭测量血液电解质的自校准离子载体离子选择电极
  • 批准号:
    10592523
  • 财政年份:
    2023
  • 资助金额:
    $ 27.56万
  • 项目类别:
Clinically-calibrated Accelerated Fatigue Test for Predicting the Clinical Performance of Dental Restorative Materials
用于预测牙科修复材料临床性能的临床校准加速疲劳测试
  • 批准号:
    10738667
  • 财政年份:
    2023
  • 资助金额:
    $ 27.56万
  • 项目类别:
EAGER: Using machine learning to develop a calibrated, remote sensing-based age model to improve late Quaternary slip-rate estimates in arid environments
EAGER:利用机器学习开发基于遥感的校准年龄模型,以改善干旱环境中第四纪晚期滑移率的估计
  • 批准号:
    2233310
  • 财政年份:
    2022
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
EAGER: Using machine learning to develop a calibrated, remote sensing-based age model to improve late Quaternary slip-rate estimates in arid environments
EAGER:利用机器学习开发基于遥感的校准年龄模型,以改善干旱环境中第四纪晚期滑移率的估计
  • 批准号:
    2210203
  • 财政年份:
    2022
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
Calibrated and Wideband Vector Signal Generation and Analysis Using Vector Network Analyser
使用矢量网络分析仪生成和分析校准的宽带矢量信号
  • 批准号:
    RTI-2023-00451
  • 财政年份:
    2022
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Research Tools and Instruments
CAREER: Soft Robotic Fingertips with High-Resolution, Calibrated Shape and Force Sensing for Dexterous Manipulation
职业:具有高分辨率、经过校准的形状和力感应的软机器人指尖,可实现灵巧的操作
  • 批准号:
    2142773
  • 财政年份:
    2022
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
A fully calibrated astronomical time scale for the Cenozoic: Dating, climate forcing, and solar system chaos
完全校准的新生代天文时标:约会、气候强迫和太阳系混沌
  • 批准号:
    2001022
  • 财政年份:
    2020
  • 资助金额:
    $ 27.56万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了