Exotic 4- Manifolds, and geometric structures

奇异4-流形和几何结构

基本信息

  • 批准号:
    1505364
  • 负责人:
  • 金额:
    $ 24.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This project will shed light on unsolved problems in geometry and topology of smooth manifolds (generalized spaces). These manifolds are related to the space-time and string theories that are of current interest to physicists. The principal goal of this project is to study and understand exotic smooth structures of 4-dimensional manifolds and mirror dualities of 7-dimensional manifolds. This project will support education, by providing opportunities for graduate students to study and contribute to advancing these fields. The PI will investigate the topology of smooth 4-manifolds, Stein manifolds, Lefschetz fibrations, and G_2 manifolds. He plans to attack many of the unsolved problems in 4-manifold theory (such as the smooth Poincare Conjecture, the s-cobordism problem, and the existence of small exotic 4-manifolds) by breaking 4-manifolds into basic easy to understand pieces, which are called Corks, Plugs and PALFs. The PI will study these pieces by applying techniques from the complex and symplectic manifold theories along with the handlebody techniques. The PI also plans to study the topology of higher dimensional Stein manifolds by the tools of Lefschetz fibrations and to study their relation to the smooth 4-manifolds. In addition the PI plans to work on geometry and topology of certain classes of 7 dimensional manifolds, called G_2 manifolds. His goal is to explain "mirror dualities" arising from the deformations of associative submanifolds of G_2 manifolds. The G_2 manifolds are of current interest to physicists because they play important role in string theory.
这个项目将阐明光滑流形(广义空间)的几何和拓扑学中未解决的问题。这些流形与物理学家当前感兴趣的时空和弦理论有关。本计画的主要目标是研究和了解四维流形的奇异光滑结构和七维流形的镜像对偶。该项目将支持教育,为研究生提供学习机会,并为推进这些领域做出贡献。 PI将研究光滑4-流形,Stein流形,Lefschetz纤维化和G_2流形的拓扑。他计划通过将4-流形分解为基本的易于理解的片段,称为软木塞,塞子和PALF,来解决4-流形理论中许多未解决的问题(如光滑庞加莱猜想,s-协边问题和小奇异4-流形的存在)。PI将通过应用复杂和辛流形理论的技术沿着体技术来研究这些作品。PI还计划通过Lefschetz纤维化的工具来研究高维Stein流形的拓扑,并研究它们与光滑4-流形的关系。此外,PI计划工作的几何和拓扑的某些类别的7维流形,称为G_2流形。他的目标是解释由G_2流形的结合子流形的变形引起的“镜像对偶”。G_2流形在弦理论中起着重要的作用,因而引起了物理学家的广泛兴趣。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Selman Akbulut其他文献

A topological resolution theorem
  • DOI:
    10.1007/bf02698689
  • 发表时间:
    1981-12-01
  • 期刊:
  • 影响因子:
    3.500
  • 作者:
    Selman Akbulut;Laurence Taylor
  • 通讯作者:
    Laurence Taylor
Exotic rational surfaces without 1-handles
不带 1 控制柄的奇异有理曲面
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selman Akbulut;Kouichi Yasui;Kouichi Yasui;安井弘一;Kouichi Yasui
  • 通讯作者:
    Kouichi Yasui
Computer graphics and minimal surfaces
计算机图形学和最小曲面
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Selman Akbulut;安井弘一;Shoichi Fujimori
  • 通讯作者:
    Shoichi Fujimori
Real algebraic structures on topological spaces
Corks and exotic ribbons in $$B^{4}$$
  • DOI:
    10.1007/s40879-022-00581-1
  • 发表时间:
    2022-09-19
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Selman Akbulut
  • 通讯作者:
    Selman Akbulut

Selman Akbulut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Selman Akbulut', 18)}}的其他基金

Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    1502135
  • 财政年份:
    2015
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: The topology and invariants of smooth 4-manifolds
FRG:协作研究:光滑4流形的拓扑和不变量
  • 批准号:
    1065879
  • 财政年份:
    2011
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Continuing Grant
Conference - Gokova Geometry/Topology Conference. To be held summer 2010-2014 in Turkey
会议 - Gokova 几何/拓扑会议。
  • 批准号:
    1005366
  • 财政年份:
    2010
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Continuing Grant
4-Manifolds, Calibrated Manifolds, Real Algebraic Varieties
4-流形、校准流形、实代数簇
  • 批准号:
    0905917
  • 财政年份:
    2009
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Continuing Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    0707123
  • 财政年份:
    2007
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
4-Manifolds, Calibrated Manifolds, Real Algebraic Varieties
4-流形、校准流形、实代数簇
  • 批准号:
    0505638
  • 财政年份:
    2005
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
Gokova Geometry/Topology Conference
Gokova几何/拓扑会议
  • 批准号:
    0403096
  • 财政年份:
    2004
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
FRG: Topological Invariants of 3 and 4-Manifolds
FRG:3 和 4 流形的拓扑不变量
  • 批准号:
    0244622
  • 财政年份:
    2003
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant
Topology of Smooth 4-Manifolds
光滑4流形拓扑
  • 批准号:
    0204579
  • 财政年份:
    2002
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Continuing Grant
Topology of Smooth 4-Manifolds
光滑4流形拓扑
  • 批准号:
    9971440
  • 财政年份:
    1999
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Standard Grant

相似海外基金

Geometric analysis on evolving Riemannian manifolds
演化黎曼流形的几何分析
  • 批准号:
    23K03105
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The geometric and algebraic properties of 4-manifolds
4-流形的几何和代数性质
  • 批准号:
    2891032
  • 财政年份:
    2023
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Studentship
Geometric analysis for non-symmetric generators on Riemannian manifolds
黎曼流形上非对称生成元的几何分析
  • 批准号:
    22K03280
  • 财政年份:
    2022
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis via manifolds with corners
通过带角的流形进行几何分析
  • 批准号:
    RGPIN-2018-05392
  • 财政年份:
    2022
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
  • 批准号:
    RGPIN-2019-04622
  • 财政年份:
    2022
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Discovery Grants Program - Individual
Volume-collapsed manifolds in Riemannian geometry and geometric inference
黎曼几何中的体积塌陷流形和几何推理
  • 批准号:
    MR/W01176X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Fellowship
Geometric structure and Floer theory of three-dimensional manifolds
三维流形的几何结构与Floer理论
  • 批准号:
    RGPIN-2017-05440
  • 财政年份:
    2022
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Discovery Grants Program - Individual
Einstein Manifolds and Related Geometric Structures
爱因斯坦流形及相关几何结构
  • 批准号:
    RGPIN-2020-05824
  • 财政年份:
    2022
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric analysis via manifolds with corners
通过带角的流形进行几何分析
  • 批准号:
    RGPIN-2018-05392
  • 财政年份:
    2021
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Discovery Grants Program - Individual
Studies in geometric analysis: the Calderon problem and differential systems on manifolds
几何分析研究:卡尔德隆问题和流形上的微分系统
  • 批准号:
    RGPIN-2019-04622
  • 财政年份:
    2021
  • 资助金额:
    $ 24.44万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了