Statistical Aggregation in Massive Data Environments

海量数据环境下的统计聚合

基本信息

  • 批准号:
    0906023
  • 负责人:
  • 金额:
    $ 11.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-15 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

Enormous amount of data are now being generated in many areas. Direct applications of existing statistical methods do not satisfy the computational need for performing on-line analytical processing (OLAP) on such massive data. Computer scientists have developed a data warehouse environment called data cube to reduce computational cost by compressing subsets given by some partitioning variables. Analysis of any subset can then possibly be achieved by aggregating the compressed data, and the computational cost becomes low because of no need to access the raw data. For complicated analyses, it is challenging to find proper compression and aggregation schemes and to study the statistical property of the aggregated analysis. Similar issues exist in another massive data environment, data stream. Existing development in these areas either aims to achieve lossless analysis, which has achieved very limited successes only for simple calculations, or provide no theoretical evaluation for the analysis from aggregation. The purpose of this proposed research is to develop statistically sound compression and aggregation methods for advanced statistical analysis of data cubes and data streams, use the above compression-then-aggregation strategy to improve computational efficiency of some statistical analysis, and develop the associated asymptotic theory.Massive data sets are common nowadays, and many traditional statistical techniques become inapplicable due to high computational costs. In this proposal, the investigator will extend the current data cube techniques to support more complicated OLAP of massive data sets by studying the statistical properties of the desired analysis. This interdisciplinary project will result in significant contributions to data warehousing, OLAP technology, and statistical computing. It will bring great impacts to important applications in large-scale medical studies, national and homeland security, stream data mining, high-performance computing, and information technology. This project's findings will be broadly disseminated to the academic community and industry through scholarly publications and conferences. We will also use the new findings as new course materials in education and training of information analysts and university students.
现在,在许多领域都产生了大量的数据。现有的统计方法的直接应用不能满足对这样的海量数据进行联机分析处理(OLAP)的计算需求。计算机科学家开发了一种称为数据立方体的数据仓库环境,通过压缩由一些划分变量给出的子集来减少计算成本。任何子集的分析都可以通过聚合压缩数据来实现,并且由于不需要访问原始数据,计算成本变得很低。对于复杂的分析,寻找合适的压缩和聚集方案以及研究聚集分析的统计特性是一个挑战。类似的问题也存在于另一个大规模数据环境中,即数据流。这些领域的现有发展要么旨在实现无损分析,仅在简单计算方面取得了非常有限的成功,要么没有为聚集分析提供理论评估。本研究的目的是开发统计上可靠的数据立方体和数据流的高级统计分析的压缩和聚合方法,使用上述压缩-聚合策略来提高某些统计分析的计算效率,并发展相关的渐近理论。在这个建议中,研究者将扩展目前的数据立方体技术,以支持更复杂的OLAP的海量数据集,通过研究所需的分析的统计特性。这个跨学科的项目将对数据仓库、OLAP技术和统计计算做出重大贡献。它将对大规模医学研究、国家和国土安全、流数据挖掘、高性能计算和信息技术等重要应用产生重大影响。该项目的研究结果将通过学术出版物和会议向学术界和工业界广泛传播。我们还将使用新发现作为信息分析师和大学生教育和培训的新课程材料。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nan Lin其他文献

Oxygen Ion Conductors For Solid Oxide Fuel Cells (SOFCs)
用于固体氧化物燃料电池 (SOFC) 的氧离子导体
Squirrel Monkeys Neurons to Three-Dimensional Translations in Eye Movement Related Vestibular - Properties of Non Frequency-Dependent Spatiotemporal Tuning
松鼠猴神经元在眼动相关前庭中的三维翻译——非频率依赖性时空调谐的特性
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. Peterson;S. Newlands;Nan Lin;M. Wei;Xiong;J. Dickman;G. DeAngelis;D. Angelaki
  • 通讯作者:
    D. Angelaki
A Comparative Study of Machine Learning Models with Hyperparameter Optimization Algorithm for Mapping Mineral Prospectivity
机器学习模型与超参数优化算法绘制矿产前景图的比较研究
  • DOI:
    10.3390/min11020159
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Nan Lin;Yongliang Chen;Haiqi Liu;Hanlin Liu
  • 通讯作者:
    Hanlin Liu
Age, the Stress Process, and Physical Distress
年龄、压力过程和身体不适
Preparation of C/SnO2 composite with rice husk-based porous carbon carrier loading ultrasmall SnO2 nanoparticles for anode in lithium-ion batteries
稻壳基多孔碳载体负载超细SnO2纳米粒子制备锂离子电池负极C/SnO2复合材料
  • DOI:
    10.1016/j.jelechem.2019.113634
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jun Shi;Nan Lin;Debo Liu;Yue Wang;Haibo Lin
  • 通讯作者:
    Haibo Lin

Nan Lin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nan Lin', 18)}}的其他基金

Doctoral Dissertation Research: Race, Class and Social Capital in Devastated Neighborhoods
博士论文研究:受灾社区的种族、阶级和社会资本
  • 批准号:
    1434602
  • 财政年份:
    2014
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Participation and Social Capital Creation
博士论文研究:参与与社会资本创造
  • 批准号:
    0101224
  • 财政年份:
    2001
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant
U.S.-China Cooperative Research (Sociology): Status Attain-ment in a Chinese Urban Area
美中合作研究(社会学):中国城市地区的地位获得
  • 批准号:
    9012727
  • 财政年份:
    1990
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Standard Grant

相似海外基金

CAREER: Engineering the nanoparticle interface for tunable biomolecular aggregation
职业:设计纳米颗粒界面以实现可调节的生物分子聚集
  • 批准号:
    2338117
  • 财政年份:
    2024
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Continuing Grant
CAREER: Towards Grid-Responsive Electrified Transportation Systems: Modeling, Aggregation, and Market Integration
职业:迈向电网响应式电气化运输系统:建模、聚合和市场整合
  • 批准号:
    2339803
  • 财政年份:
    2024
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Continuing Grant
Developing first-in-class aggregation-specific antibodies for a severe genetic neurological disease
开发针对严重遗传神经系统疾病的一流聚集特异性抗体
  • 批准号:
    10076445
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Grant for R&D
Systematic manipulation of tau protein aggregation: bridging biochemical and pathological properties
tau 蛋白聚集的系统操作:桥接生化和病理特性
  • 批准号:
    479334
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Operating Grants
In situ observation of mechanical response of polymers doped with aggregation-induced emission probes
原位观察掺杂聚集诱导发射探针的聚合物的机械响应
  • 批准号:
    23K04852
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inhibition of cell-to-cell propagation of alpha-synuclein aggregation by glial cells and its involvement in neuropathology in Parkinson's disease.
神经胶质细胞抑制α-突触核蛋白聚集的细胞间传播及其参与帕金森病的神经病理学。
  • 批准号:
    23K06928
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Gas ash-particle separation and the role of particle aggregation in volcanic plumes
火山灰-颗粒分离和颗粒聚集在火山羽流中的作用
  • 批准号:
    2887915
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Studentship
CAREER: Redesign of Ancillary Services via Aggregation and Disaggregation of Information, Flexibility, and Capability
职业:通过信息、灵活性和能力的聚合和分解重新设计辅助服务
  • 批准号:
    2238414
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Continuing Grant
Development of inhibitors for amyloid peptide aggregation based on peptidomimetics
基于拟肽的淀粉样肽聚集抑制剂的开发
  • 批准号:
    23K14318
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Mechanisms of structural plasticity, client interactions, and co-aggregation of the lens ⍺-crystallins
晶状体α-晶状体的结构可塑性、客户相互作用和共聚集机制
  • 批准号:
    10709482
  • 财政年份:
    2023
  • 资助金额:
    $ 11.99万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了