Exploring and detecting complex multivariate dependencies through sparse graphical models

通过稀疏图形模型探索和检测复杂的多元依赖关系

基本信息

  • 批准号:
    0906392
  • 负责人:
  • 金额:
    $ 10.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-15 至 2011-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The covariance parameter is the natural parameter of interest when exploring complex relationships between many variables in parametric models. Current methodology on high dimensional covariance estimation has focused on regularizing or putting zeros in the covariance matrix or its inverse using methods based on the lasso. Though very useful, these methods do not address some of the glaring gaps in the literature. First it is well known that lasso and similar penalization methods yield sparse models and estimators - yet a formal undertaking of the spectral properties of regularized covariance estimators or those of random matrices that arise naturally in graphical models is not available in the literature. This gap in the literature will be addressed. Second, an important class of models that have recently received much attention are the so-called covariance graph models. These models encode marginal independences in multivariate distributions and thus can yield more parsimonious representations. A comprehensive framework for Bayesian inference and model selection for this class of models is not available. This important class of problems is investigated in this project. One of the original justifications for the need for covariance regularized estimation is that the covariance matrix features in the mean estimation problem, and when constructing confidence intervals for the mean (for instance in MANOVA), or in regression yet there is relatively very little work in the area of covariance regularization required for the specific needs of regression. A generalized framework which investigates the merits of using the covariance matrix of the explanatory variables for regression purposes is undertaken, thereby providing insights into obtaining better estimators for regression coefficients than those suggested by standard methods. In recent years, the availability of high-throughput data from genomic, finance, environmental, marketing (among other) applications has created an urgent need for methodology and tools for analyzing high-dimensional data. Making sense of all the many complex relationships that are in the data, formulating correct models and developing inferential procedures is one of the major challenges facing statisticians today, and also those working in applied fields. This project proposes to tackle some of the pressing questions that arise when exploring multivariate dependencies in high dimensions. As a concrete application, the methodology developed in this project will be used to understand the interconnectedness of genes in cancer studies and cardiovascular medicine, while maintaining the statistical rigor and ease of interpretability of previously developed methods. Hence a project of this nature will have widespread applications, as understanding relationships between many variables or players is an endeavor that is common to many scientific disciplines. The proposed work, though rooted in the principles of statistics, is interdisciplinary, and involves collaborations with biomedical scientists, engineers and the environmental scientists.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。在探索参数模型中多个变量之间的复杂关系时,协方差参数是感兴趣的自然参数。目前高维协方差估计的方法集中在正则化或把零的协方差矩阵或其逆使用基于套索的方法。尽管这些方法非常有用,但它们并没有解决文献中的一些明显空白。首先,众所周知,套索和类似的惩罚方法产生稀疏的模型和估计-但正规化的协方差估计或那些自然出现在图形模型中的随机矩阵的谱特性的正式承诺是不可用的文献。将解决文献中的这一空白。其次,最近受到广泛关注的一类重要模型是所谓的协方差图模型。这些模型在多变量分布中编码了边际独立性,因此可以产生更简约的表示。这类模型的贝叶斯推理和模型选择的综合框架是不可用的。这一类重要的问题是在这个项目中进行调查。需要协方差正则化估计的原始理由之一是协方差矩阵在均值估计问题中的特征,并且在构造均值的置信区间时(例如在MANOVA中),或者在回归中,但是在回归的特定需求所需的协方差正则化领域中的工作相对很少。一个广义的框架,调查使用的解释变量的协方差矩阵的回归目的的优点进行,从而获得更好的估计回归系数比标准方法所建议的见解。近年来,来自基因组、金融、环境、营销(以及其他)应用的高通量数据的可用性已经产生了对用于分析高维数据的方法和工具的迫切需求。理解数据中的许多复杂关系,制定正确的模型和开发推理程序是当今统计学家面临的主要挑战之一,也是那些在应用领域工作的人。该项目旨在解决在探索高维多变量依赖关系时出现的一些紧迫问题。作为一个具体的应用,在这个项目中开发的方法将被用来理解癌症研究和心血管医学中基因的相互联系,同时保持统计的严谨性和先前开发的方法的可解释性。因此,这种性质的项目将具有广泛的应用,因为理解许多变量或参与者之间的关系是许多科学学科共同的奋进。拟议的工作,虽然植根于统计学的原则,是跨学科的,并涉及与生物医学科学家,工程师和环境科学家的合作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Balakanapathy Rajaratnam其他文献

Balakanapathy Rajaratnam的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Balakanapathy Rajaratnam', 18)}}的其他基金

CAREER: Scalable methods for discovering multivariate dependencies in high dimensional data.
职业:用于发现高维数据中多元依赖性的可扩展方法。
  • 批准号:
    1916787
  • 财政年份:
    2017
  • 资助金额:
    $ 10.38万
  • 项目类别:
    Continuing Grant
CAREER: Scalable methods for discovering multivariate dependencies in high dimensional data.
职业:用于发现高维数据中多元依赖性的可扩展方法。
  • 批准号:
    1352656
  • 财政年份:
    2014
  • 资助金额:
    $ 10.38万
  • 项目类别:
    Continuing Grant
Collaborative Research: Objective Bayesian Model Selection and Estimation in High Dimensional Statistical Models
合作研究:高维统计模型中的客观贝叶斯模型选择和估计
  • 批准号:
    1106642
  • 财政年份:
    2011
  • 资助金额:
    $ 10.38万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Efficient high dimensional Bayesian methods for climate field reconstruction
CMG 合作研究:气候场重建的高效高维贝叶斯方法
  • 批准号:
    1025465
  • 财政年份:
    2010
  • 资助金额:
    $ 10.38万
  • 项目类别:
    Standard Grant
Collaborative Research: P2C2--Multiproxy Reconstructions as A Missing-Data Problem: New Techniques and their Application to Regional Climates of the Past Millennium
合作研究:P2C2——作为缺失数据问题的多代理重建:新技术及其在过去千年区域气候中的应用
  • 批准号:
    1003823
  • 财政年份:
    2010
  • 资助金额:
    $ 10.38万
  • 项目类别:
    Standard Grant

相似海外基金

Detecting cell to cell contacts in zebrafish with a synthetic receptor methodology
使用合成受体方法检测斑马鱼的细胞与细胞接触
  • 批准号:
    10645331
  • 财政年份:
    2023
  • 资助金额:
    $ 10.38万
  • 项目类别:
Epitope alteration for detecting auto-antibodies of beta-amyloid in serum
用于检测血清中β-淀粉样蛋白自身抗体的表位改变
  • 批准号:
    10740080
  • 财政年份:
    2023
  • 资助金额:
    $ 10.38万
  • 项目类别:
Detecting and locating cancer for patients with CT-detected lung nodules
为 CT 检测到肺结节的患者检测和定位癌症
  • 批准号:
    10318013
  • 财政年份:
    2022
  • 资助金额:
    $ 10.38万
  • 项目类别:
Novel patient-derived 3D platform for detecting TDP-43 proteinopathy and associated biomarkers for ALS/FTD
用于检测 TDP-43 蛋白病和 ALS/FTD 相关生物标志物的新型患者衍生 3D 平台
  • 批准号:
    10395206
  • 财政年份:
    2022
  • 资助金额:
    $ 10.38万
  • 项目类别:
A new class of biosensors for detecting signaling dynamics without live-cell microscopy
无需活细胞显微镜即可检测信号动态的新型生物传感器
  • 批准号:
    10709472
  • 财政年份:
    2022
  • 资助金额:
    $ 10.38万
  • 项目类别:
Detecting structural variants in a large population of samples through high-throughput sequencing data
通过高通量测序数据检测大量样本中的结构变异
  • 批准号:
    10707270
  • 财政年份:
    2022
  • 资助金额:
    $ 10.38万
  • 项目类别:
A new class of biosensors for detecting signaling dynamics without live-cell microscopy
无需活细胞显微镜即可检测信号动态的新型生物传感器
  • 批准号:
    10337472
  • 财政年份:
    2022
  • 资助金额:
    $ 10.38万
  • 项目类别:
Design of genetically encoded sensors for detecting endogenous opioid peptides
用于检测内源性阿片肽的基因编码传感器的设计
  • 批准号:
    10682579
  • 财政年份:
    2022
  • 资助金额:
    $ 10.38万
  • 项目类别:
Novel patient-derived 3D platform for detecting TDP-43 proteinopathy and associated biomarkers for ALS/FTD
用于检测 TDP-43 蛋白病和 ALS/FTD 相关生物标志物的新型患者衍生 3D 平台
  • 批准号:
    10571879
  • 财政年份:
    2022
  • 资助金额:
    $ 10.38万
  • 项目类别:
Detecting racial disparities in cancer survival by integrating multiple high-dimensional observational studies
通过整合多个高维观察研究来检测癌症生存的种族差异
  • 批准号:
    10699968
  • 财政年份:
    2022
  • 资助金额:
    $ 10.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了