Collaborative Research: Objective Bayesian Model Selection and Estimation in High Dimensional Statistical Models
合作研究:高维统计模型中的客观贝叶斯模型选择和估计
基本信息
- 批准号:1106642
- 负责人:
- 金额:$ 9.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2011
- 资助国家:美国
- 起止时间:2011-10-01 至 2015-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
It is widely accepted that in many high dimensional situations, model selection has to be performed either before parameter estimation or simultaneously, in order to reduce the number of parameters under consideration. Indeed, model selection is one of the major challenges facing statisticians working with high dimensional data. Tools such as regularization and sparsity are some of the common notions employed to obtain parsimonious models to explain observed data. In recent years, the field of statistics has witnessed an explosion of frequentist and Bayesian methods for high dimensional problems. Despite these and other advances, Bayesian model selection in an "objective" sense in high dimensional problems remains an important problem that has yet to be solved satisfactorily. The need for objectivity translates into a need for specifying noninformative improper priors, which in turn renders the traditional Bayes factors unusable. The project proposes to derive objective Bayesian estimation and model selection procedures in a large class of high dimensional graphical models. The methodology that is proposed in this project therefore aims to contribute to much needed theory in the area of objective Bayesian model selection for high dimensional graphical models. In the process the methodology studies the benefits and shortcomings of objective Bayesian methods in this context. The theory that is developed feeds into developing algorithms and computational techniques for model selection/estimation in high dimensional settings.The availability of throughput or high dimensional data has touched almost every field of science. The need to formulate correct models that explain observed high dimensional data permeates through many scientific fields. Indeed, such data where the number of variables is often much higher than the number of samples, referred to as the "large p small n" problem, is now more pervasive than it has ever been. Discovering statistical signals in high dimensional data, proposing correct models that can explain such data, and parameter estimation in these high dimensional settings are some of the major challenges that modern day statisticians have to contend with. Moreover, such challenges also feature in high stakes debates such as climate change, effectiveness of certain drugs in clinical trials, and relevance of various biomarkers in cancer studies. This project proposes to develop statistical methodology which is specifically targeted towards identifying models which explain high dimensional data in an objective manner. In particular the project is designed to develop better objective Bayesian model selection and parameter estimation methods in high dimensional problems, and has widespread applications. The PI and co-PI collaborate with scientists in applied fields, especially with faculty/researchers in their Medical Schools, Schools of Engineering and Environmental Sciences. Training of graduate students and mentoring is an integral part of this collaborative research. Scientific output from the project is intended for publication in high impact peer-reviewed journals.
人们普遍认为,在许多高维情况下,模型选择必须在参数估计之前或同时进行,以减少所考虑的参数的数量。事实上,模型选择是统计学家在处理高维数据时面临的主要挑战之一。工具,如正则化和稀疏性是一些常见的概念,用于获得简约模型来解释观测数据。近年来,统计领域已经见证了爆炸的频率和贝叶斯方法的高维问题。尽管有这些和其他的进步,贝叶斯模型选择在“客观”的意义上在高维问题仍然是一个重要的问题,尚未得到满意的解决。对客观性的需求转化为对指定无信息的不适当先验的需求,这反过来又使传统的贝叶斯因子不可用。该项目提出了在一个大类的高维图形模型推导出客观贝叶斯估计和模型选择程序。因此,在这个项目中提出的方法的目的是有助于急需的理论在该地区的客观贝叶斯模型选择高维图形模型。在这个过程中,方法学研究的优点和缺点的客观贝叶斯方法在这种情况下。所开发的理论为高维环境中的模型选择/估计提供了算法和计算技术。吞吐量或高维数据的可用性几乎涉及科学的每个领域。需要制定正确的模型,解释观察到的高维数据渗透到许多科学领域。事实上,这种数据的变量数量往往比样本数量高得多,被称为“大p小n”问题,现在比以往任何时候都更加普遍。发现高维数据中的统计信号、提出可以解释此类数据的正确模型以及这些高维环境中的参数估计是现代统计学家必须应对的一些主要挑战。此外,这些挑战也出现在高风险的辩论中,如气候变化,某些药物在临床试验中的有效性,以及癌症研究中各种生物标志物的相关性。该项目建议开发专门针对识别模型的统计方法,这些模型以客观的方式解释高维数据。特别是该项目旨在发展高维问题中更好的客观贝叶斯模型选择和参数估计方法,具有广泛的应用。PI和co-PI与应用领域的科学家合作,特别是与医学院,工程和环境科学学院的教师/研究人员合作。研究生的培训和指导是这种合作研究的一个组成部分。该项目的科学产出将在高影响力的同行评审期刊上发表。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Balakanapathy Rajaratnam其他文献
Balakanapathy Rajaratnam的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Balakanapathy Rajaratnam', 18)}}的其他基金
CAREER: Scalable methods for discovering multivariate dependencies in high dimensional data.
职业:用于发现高维数据中多元依赖性的可扩展方法。
- 批准号:
1916787 - 财政年份:2017
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
CAREER: Scalable methods for discovering multivariate dependencies in high dimensional data.
职业:用于发现高维数据中多元依赖性的可扩展方法。
- 批准号:
1352656 - 财政年份:2014
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
CMG Collaborative Research: Efficient high dimensional Bayesian methods for climate field reconstruction
CMG 合作研究:气候场重建的高效高维贝叶斯方法
- 批准号:
1025465 - 财政年份:2010
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Collaborative Research: P2C2--Multiproxy Reconstructions as A Missing-Data Problem: New Techniques and their Application to Regional Climates of the Past Millennium
合作研究:P2C2——作为缺失数据问题的多代理重建:新技术及其在过去千年区域气候中的应用
- 批准号:
1003823 - 财政年份:2010
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Exploring and detecting complex multivariate dependencies through sparse graphical models
通过稀疏图形模型探索和检测复杂的多元依赖关系
- 批准号:
0906392 - 财政年份:2009
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Strengthening and Developing the Foundation of International Education and Research through Objective Evaluation of the Effectiveness of Metaverse Intercultural Collaborative Learning
通过客观评估元宇宙跨文化协作学习的有效性,加强和发展国际教育和研究的基础
- 批准号:
23KK0037 - 财政年份:2023
- 资助金额:
$ 9.92万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
CDS&E: Collaborative Research: HyLoC: Objective-driven Adaptive Hybrid Lossy Compression Framework for Extreme-Scale Scientific Applications
CDS
- 批准号:
2303064 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Collaborative Research: A Comprehensive Dynamic Search Framework for Asynchronous Multi-Objective Multi-Agent Planning
协作研究:异步多目标多智能体规划的综合动态搜索框架
- 批准号:
2120219 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Collaborative Research: A Comprehensive Dynamic Search Framework for Asynchronous Multi-Objective Multi-Agent Planning
协作研究:异步多目标多智能体规划的综合动态搜索框架
- 批准号:
2120529 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120684 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Collaborative Research: Development of Classification Theory and Methods for Objective Asymmetry, Sample Size Limitation, Labeling Ambiguity, and Feature Importance
合作研究:针对客观不对称性、样本量限制、标签歧义和特征重要性的分类理论和方法的发展
- 批准号:
2113500 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Collaborative Research: Converging Design Methodology: Multi-objective Optimization of Resilient Structural Spines
合作研究:融合设计方法:弹性结构脊柱的多目标优化
- 批准号:
2120683 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Second Language Speech Production: Formulation of Objective Speech Intelligibility Measures and Learner-Specific Feedback
EAGER:协作研究:第二语言语音生成:客观语音清晰度测量和学习者特定反馈的制定
- 批准号:
2140415 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Production of Second Language Speech: Formulation of Objective Speech Intelligibility Measures and Learner-specific Feedback
EAGER:协作研究:第二语言语音的产生:客观语音清晰度测量和学习者特定反馈的制定
- 批准号:
2140469 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Collaborative Research: Development of Classification Theory and Methods for Objective Asymmetry, Sample Size Limitation, Labeling Ambiguity, and Feature Importance
合作研究:针对客观不对称性、样本量限制、标签歧义和特征重要性的分类理论和方法的发展
- 批准号:
2113754 - 财政年份:2021
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant