Optimal Sequential Allocation in Dynamic Environments

动态环境中的最优顺序分配

基本信息

  • 批准号:
    0906424
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-15 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

Bandit problems have been studied in many different contexts and variations. The vast majority of work focuses on a static environment, in which, at each time, the probability distribution of the reward yielded by each action remains unchanged. This static model may clearly fail to produce decision strategies that are optimal in a dynamically changing environment. Despite their sounding relevance in practical applications, such environments have received sporadic attention in the statistical community so far. The contribution of the proposed research to the current state of knowledge will consist in proposing models for new dynamic environments that are motivated by a significant class of applications, designing policies that adapt to dynamic environments, analyzing the performance of these policies and assessing optimality from a finite time (non asymptotic) point of view.Sequential allocation in dynamic environments is a problem that arises at the intersection of nonparametric statistics, machine learning and operations research. This project involves techniques from these fields and points out fundamental bridges between the extant results to form a more unified theory of the subject. This theory will then serve as a basis for producing computationally efficient allocation policies with potential applications in clinical trials, drug discovery and real time web page content optimization.
人们在许多不同的背景和变体中研究了Bandit问题。绝大多数工作都集中在一个静态的环境上,在这个环境中,每个动作产生的奖励的概率分布在每个时刻都保持不变。这种静态模型显然不能产生在动态变化的环境中最优的决策策略。尽管这些环境在实际应用中听起来很重要,但迄今为止在统计界得到了零星的关注。所提出的研究对当前知识状态的贡献将包括为新的动态环境提出模型,设计适应动态环境的策略,分析这些策略的性能,并从有限时间(非渐近)的角度评估最优性。动态环境中的顺序分配是非参数统计、机器学习和运筹学交叉产生的问题。这个项目涉及到这些领域的技术,并指出了现有结果之间的基本桥梁,以形成一个更统一的主题理论。这一理论将作为产生计算高效的分配策略的基础,在临床试验、药物发现和实时网页内容优化方面具有潜在的应用前景。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philippe Rigollet其他文献

THÈSE DE DOCTORAT ÈS MATHÉMATIQUES
数学博士论文
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bodhisattva Sen;Richard Nickl;Vladimir Koltchinskii;Philippe Rigollet;Arnak S. Dalalyan
  • 通讯作者:
    Arnak S. Dalalyan

Philippe Rigollet的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philippe Rigollet', 18)}}的其他基金

Collaborative Research: CIF: Medium: Analysis and Geometry of Neural Dynamical Systems
合作研究:CIF:媒介:神经动力系统的分析和几何
  • 批准号:
    2106377
  • 财政年份:
    2021
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Statistical Estimation with Algebraic Structure
合作研究:代数结构的统计估计
  • 批准号:
    1712596
  • 财政年份:
    2017
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Statistical and Computational Tradeoffs in High Dimensional Learning
高维学习中的统计和计算权衡
  • 批准号:
    1541100
  • 财政年份:
    2015
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
CAREER: Large Scale Stochastic Optimization and Statistics
职业:大规模随机优化和统计
  • 批准号:
    1541099
  • 财政年份:
    2015
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Statistical and Computational Tradeoffs in High Dimensional Learning
高维学习中的统计和计算权衡
  • 批准号:
    1317308
  • 财政年份:
    2013
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
CAREER: Large Scale Stochastic Optimization and Statistics
职业:大规模随机优化和统计
  • 批准号:
    1053987
  • 财政年份:
    2011
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Liquid Crystal-Templated Sequential Infiltration Synthesis of Hybrid Organic/Inorganic Materials with Multidimensional Chiral Structures
职业:具有多维手性结构的有机/无机杂化材料的液晶模板连续渗透合成
  • 批准号:
    2337740
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Self-Supervised Sequential Biomedical Image-Omics
自监督序贯生物医学图像组学
  • 批准号:
    DE240100168
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Discovery Early Career Researcher Award
Discrete Structural Optimization through a Sequential Decision Process
通过顺序决策过程进行离散结构优化
  • 批准号:
    2322853
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
CRII: CIF: Sequential Decision-Making Algorithms for Efficient Subset Selection in Multi-Armed Bandits and Optimization of Black-Box Functions
CRII:CIF:多臂老虎机中高效子集选择和黑盒函数优化的顺序决策算法
  • 批准号:
    2246187
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Tyrosinase-based sequential proximity labeling for tracking proteome dynamics
基于酪氨酸酶的顺序邻近标记用于跟踪蛋白质组动态
  • 批准号:
    23K13855
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Environmentally friendly sequential treatments for gold extraction from double refractory gold ores
双耐火金矿提金的环保序贯处理
  • 批准号:
    23KJ1718
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Optimizing Telehealth-delivery of a Weight Loss Intervention in Older Adults with Multiple Chronic Conditions: A Sequential, Multiple Assignment, Randomized Trial
优化对患有多种慢性病的老年人进行远程医疗的减肥干预:一项序贯、多项分配、随机试验
  • 批准号:
    10583917
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
A Stepped-Care Approach to Treating Dental Fear: A Sequential, Multiple Assignment, Randomized Trial For Cognitive-Behavioral Treatment via Mobile App and Evidence-Based Collaborative Care
治疗牙科恐惧症的阶梯式护理方法:通过移动应用程序和循证协作护理进行认知行为治疗的序贯、多重分配、随机试验
  • 批准号:
    10729822
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
Pre-motor neural circuits enable versatile and sequential limb movements
前运动神经回路可实现多功能且连续的肢体运动
  • 批准号:
    10721086
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
P1: Sources and Mechanisms of Sequential Activity
P1:顺序活动的来源和机制
  • 批准号:
    10705963
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了