Discrete Structural Optimization through a Sequential Decision Process
通过顺序决策过程进行离散结构优化
基本信息
- 批准号:2322853
- 负责人:
- 金额:$ 36.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The aim of this award is to derive a rigorous and highly effective discrete structural optimization framework by converging structural optimization principles and sequential decision-making algorithms. Structural optimization is a design technique that is used to identify material-efficient design solutions and is widely used in many disciplines, including civil, aerospace, and mechanical engineering. Hence, new design frameworks that are capable of identifying novel and efficient solutions can improve design outcomes and be broadly beneficial by, for example, reducing the consumption of natural resources, reducing embodied carbon, improving safety and serviceability, and enhancing aesthetics. Civil structures, for example those made from steel or timber, are often constructed with standardized elements. Optimizing such structures using conventional approaches can be computationally inefficient, limited in application, or introduce approximation into the solution. By framing discrete structural optimization as a sequential decision process, that can be adeptly solved with contemporary artificial intelligence techniques, the derived framework will be particularly well suited for optimizing engineered systems constructed from standardized elements, thus leading directly to highly efficient discrete solutions and improving design outcomes. The research will be complemented by the development of an educational software application, intended for K-12 and undergraduate level students in STEM fields, that will be made publicly available to promote broad adoption and an inclusive learning opportunity about structural behavior, design, and optimization when presented as a game. The research will also provide opportunities to teach, train, and mentor students from underrepresented groups in an emerging area through outreach to various diversity programs and student organizations.The specific goal of this research is to discover the knowledge necessary to frame discrete structural optimization as a Markov Decision Process that can be adaptly solved with deep reinforcement learning techniques so as to derive a rigorous and highly effective discrete structural optimization framework. Thus, the specific research objectives of this project are to: (i) investigate how best to define the actions of the Markov Decision Process to include both topological and parametric components so as to accommodate the discrete design variables representing standardized element cross-sectional geometries; (ii) investigate and derive deep reinforcement learning solution architectures tailored for the discrete structural optimization problem; (iii) extend the framework’s applicability to the prominent volume minimization optimization problem; (iv) apply the framework to various design examples to validate and benchmark the learned policies and synthesized solutions; and (v) integrate selected design examples from the preceding objective into the development of the educational application/software where the design of truss and frame structures is presented as a game based upon sequential decision making.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项的目的是通过融合结构优化原理和顺序决策算法来获得严格和高效的离散结构优化框架。结构优化是一种设计技术,用于确定材料效率的设计解决方案,并广泛应用于许多学科,包括民用,航空航天和机械工程。因此,能够识别新颖有效解决方案的新设计框架可以改善设计结果,并通过例如减少自然资源消耗、减少隐含碳、提高安全性和可服务性以及增强美观性而广泛受益。土木结构,例如由钢或木材制成的土木结构,通常用标准化元件建造。使用传统方法优化这样的结构可能在计算上效率低下,应用受限,或者将近似引入到解决方案中。通过将离散结构优化作为一个连续的决策过程,可以熟练地解决与当代人工智能技术,派生的框架将特别适合于优化工程系统构建的标准化元素,从而直接导致高效的离散解决方案,提高设计成果。这项研究将通过开发一个教育软件应用程序来补充,该应用程序适用于K-12和STEM领域的本科生,该应用程序将公开提供,以促进广泛采用和关于结构行为,设计和优化的包容性学习机会。这项研究还将提供机会,教学,培训,本研究的具体目标是发现将离散结构优化框架为马尔可夫决策过程所需的知识,该过程可以通过深度强化学习技术自适应地解决,从而获得严格且高效的离散结构优化框架因此,该项目的具体研究目标是:(i)研究如何最好地定义马尔可夫决策过程的动作,以包括拓扑和参数组件,从而适应代表标准化元件横截面几何形状的离散设计变量;(ii)研究并推导出针对离散结构优化问题量身定制的深度强化学习解决方案架构;(iii)将框架的适用性扩展到突出的体积最小化优化问题;(iv)将框架应用于各种设计示例,以验证和基准测试学习的策略和合成的解决方案;以及(v)将来自前述目标的所选设计示例集成到教育应用程序的开发中。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gordon Warn其他文献
Gordon Warn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gordon Warn', 18)}}的其他基金
LEAP-HI: Optimal Design and Life-Long Adaptation of Civil Infrastructure in a Changing and Uncertain Environment for a Sustainable Future
LEAP-HI:在不断变化和不确定的环境中土木基础设施的优化设计和终身适应,实现可持续的未来
- 批准号:
2053620 - 财政年份:2021
- 资助金额:
$ 36.4万 - 项目类别:
Standard Grant
RSB/Collaborative Research: A Sequential Decision Framework to Support Trade Space Exploration of Multi-Hazard Resilient and Sustainable Building Designs
RSB/合作研究:支持多灾种弹性和可持续建筑设计贸易空间探索的序贯决策框架
- 批准号:
1455444 - 财政年份:2015
- 资助金额:
$ 36.4万 - 项目类别:
Standard Grant
CAREER: A Performance-Based Multi-Objective Optimization Framework to Define Innovative Structural Concepts and Support the Seismic Design of Critical Buildings
职业生涯:基于性能的多目标优化框架,用于定义创新结构概念并支持关键建筑的抗震设计
- 批准号:
1351591 - 财政年份:2014
- 资助金额:
$ 36.4万 - 项目类别:
Standard Grant
Stability of Elastomeric and Lead-Rubber Seismic Isolation Bearings Under Extreme Earthquake Loading
弹性和铅橡胶隔震支座在极端地震荷载下的稳定性
- 批准号:
1031362 - 财政年份:2010
- 资助金额:
$ 36.4万 - 项目类别:
Standard Grant
NSF East Asia Summer Institutes for US Graduate Students
美国研究生 NSF 东亚暑期学院
- 批准号:
0305010 - 财政年份:2003
- 资助金额:
$ 36.4万 - 项目类别:
Standard Grant
相似国自然基金
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
CAREER: Structural Estimation and Optimization for Partially Observable Markov Decision Processes and Markov Games
职业:部分可观察马尔可夫决策过程和马尔可夫博弈的结构估计和优化
- 批准号:
2236477 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Standard Grant
ERI: Enhancing Life-cycle Resilience of Cable-Stayed Bridges to Extreme Winds through Areo-Structural Optimization
ERI:通过区域结构优化增强斜拉桥生命周期对极端风的抵御能力
- 批准号:
2301824 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Standard Grant
Development of a Structural Optimization Method for the Midship Section of a Ship with Deep Reinforcement Learning AI incorporating Principal Dimensions as Design Variables
利用深度强化学习人工智能(将主尺寸作为设计变量)开发船舶中段结构优化方法
- 批准号:
23K13508 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
AI assisted analyses on the structural and mechanical optimization of wood materials
AI辅助分析木质材料的结构和力学优化
- 批准号:
22KF0199 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Structural Lay-Out Optimization of Steel Structures
钢结构结构布局优化
- 批准号:
2883884 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Studentship
Bidirectional Evolutionary Structural Optimization for Transient Problems
瞬态问题的双向进化结构优化
- 批准号:
DP230103180 - 财政年份:2023
- 资助金额:
$ 36.4万 - 项目类别:
Discovery Projects
Fuselage structural dynamic and vibro-acoustic analysis, modeling, and optimization
机身结构动力学和振动声学分析、建模和优化
- 批准号:
536637-2018 - 财政年份:2022
- 资助金额:
$ 36.4万 - 项目类别:
Collaborative Research and Development Grants
Structural optimization of vibsanins with scaffold diversity as protein kinase C activator
具有支架多样性的 vibsanins 作为蛋白激酶 C 激活剂的结构优化
- 批准号:
22K05464 - 财政年份:2022
- 资助金额:
$ 36.4万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Optimization and Structural Investigations of Lead-reduced Perovskite Films
减铅钙钛矿薄膜的优化与结构研究
- 批准号:
576403-2022 - 财政年份:2022
- 资助金额:
$ 36.4万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements
Designing Faster Algorithms by Connecting Structural Combinatorics and Convex Optimization
通过连接结构组合学和凸优化来设计更快的算法
- 批准号:
557770-2021 - 财政年份:2022
- 资助金额:
$ 36.4万 - 项目类别:
Postgraduate Scholarships - Doctoral