New Developments in Estimation, Selection and Applications for Mixed Models

混合模型估计、选择和应用的新进展

基本信息

  • 批准号:
    0906661
  • 负责人:
  • 金额:
    $ 11.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Correlated data are seen in diverse fields of sciences and humanities, ranging from computational biology and geology to health and social studies. However, modern correlated data frequently present additional complications such as high-dimensionality, nonlinearity and nongaussianity, for which more complex models are needed. Often times, these models require a large number of parameters, and the number of the parameters can increase with the sample size and can even be greater than the sample size. These pose significant challenges on both theoretical and computational fronts, as it is difficult to directly apply traditional likelihood techniques. This proposal aims to develop innovative statistical procedures and efficient computing algorithms for analyzing correlated data with complicated features using mixed models. The investigator focuses on three classes of mixed models: linear mixed models, nonlinear mixed models and generalized mixed models, and extends the concept of partial consistency and the nonconcave penalized least squares method to address several challenging issues in mixed model estimation and selection. In particular, the investigator 1) explores the concept of partial consistency in linear mixed models and develops a simple yet robust two-step estimation method; 2) develops penalized least squares methods to select fixed effects as well as the covariance and precision matrices of random effects; 3) formulates the nonlinear mixed model estimation and testing problems as model selection problems and develops a group selection method for nonlinear mixed models; 4) extends the proposed penalized least squares method to ultra-high dimensional variable selection; and 5) generalizes the proposed two-step estimation method and penalized least squares method to generalized linear mixed models. The research findings of this proposal will greatly broaden the applications of mixed models, especially in jointly modeling different types of data. For example, one can jointly model clinical and genomics data in a unified way where genomics data such as gene expressions are treated as random effects and explain the heterogeneity among groups while clinical data such as age, gender and blood pressure are treated as fixed effects and are of primary interest. Such a joint modeling approach allows one to account for the correlation among genes and to study genes or genetic pathways in a system way rather than traditional gene-by-gene way. Moreover, the research findings of this proposal will also shred light on analyzing high-dimensional and massive data. For example, by extending the concept of partial consistency to mixed models, one will have better understandings as how to explore the unique structure of high-dimensional data in order to extract valuable information to produce consistent, efficient and robust estimates for some parameters. In addition, the proposed methodologies will be introduced to researchers in other areas through interdisciplinary collaboration work, and will also be integrated into the investigator's educational activities by developing graduate and undergraduate curriculums and by training graduate students. Open source R and Matlab codes implementing the proposed methodologies will be made available to general public.
该奖项是根据2009年《美国复苏与再投资法》(公法111-5)资助的。 相关数据在科学和人文科学的不同领域中可以看到,从计算生物学和地质学到健康和社会研究。但是,现代相关数据经常呈现出其他并发症,例如高维,非线性和nongaussian,需要更复杂的模型。 通常,这些模型需要大量参数,并且参数的数量可以随样本量而增加,甚至可能大于样本量。 这些在理论和计算方面都构成了重大挑战,因为很难直接应用传统的可能性技术。 该建议旨在开发创新的统计程序和有效的计算算法,用于使用混合模型分析具有复杂特征的相关数据。研究者专注于三类混合模型:线性混合模型,非线性混合模型和广义混合模型,并扩展了部分一致性的概念和非concave的惩罚最小二乘方法,以解决混合模型估计和选择中的几个具有挑战性的问题。 特别是,研究者1)探讨了线性混合模型中部分一致性的概念,并开发了一种简单而强大的两步估计方法; 2)开发惩罚最小二乘方法,以选择固定效应以及随机效应的协方差和精确矩阵; 3)提出非线性混合模型估计和测试问题作为模型选择问题,并为非线性混合模型开发了组选择方法; 4)将提议的惩罚最小二乘法扩展到超高维变量选择; 5)将提出的两步估计方法概括为通用线性混合模型的最小二乘方法。该提案的研究结果将大大拓宽混合模型的应用,尤其是在共同建模不同类型的数据时。 例如,人们可以以统一的方式共同对临床和基因组学数据进行建模,其中基因组数据(例如基因表达)被视为随机效应并解释组之间的异质性,而临床数据(例如年龄,性别和血压)则被视为固定效应,并且具有主要兴趣。 这种联合建模方法使人们可以以系统方式而不是传统的基因方式来说明基因之间的相关性,并以系统的方式研究基因或遗传途径。 此外,该提案的研究结果还将阐明分析高维和大量数据。 例如,通过将部分一致性的概念扩展到混合模型,人们将对如何探索高维数据的独特结构,以便提取有价值的信息以为某些参数提供一致,高效且可靠的估计值。此外,拟议的方法将通过跨学科的合作工作向其他领域的研究人员介绍,还将通过开发研究生和本科课程和培训研究生,将其纳入研究人员的教育活动中。 实施该方法的开源R和MATLAB代码将提供给公众。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Feifang Hu其他文献

Response-adaptive treatment randomization for multiple comparisons of treatments with recurrentevent responses
反应适应性治疗随机化,用于治疗与复发事件反应的多重比较
  • DOI:
    10.1177/09622802221095244
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Jingya Gao;Feifang Hu;Siu Hung Cheung;Pei-Fang Su
  • 通讯作者:
    Pei-Fang Su
Adaptive treatment allocation for comparative clinical studies with recurrent events data
使用复发事件数据进行比较临床研究的适应性治疗分配
  • DOI:
    10.1111/biom.13117
  • 发表时间:
    2019-09
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Jingya Gao;Pei‐Fang Su;Feifang Hu;Siu Hung Cheung
  • 通讯作者:
    Siu Hung Cheung
Statistical inference of adaptive randomized clinical trials for personalized medicine
个性化医疗适应性随机临床试验的统计推断
  • DOI:
    10.4155/cli.15.15
  • 发表时间:
    2015-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Feifang Hu;Yanqing Hu;Wei Ma;Lixin Zhang;Hongjian Zhu
  • 通讯作者:
    Hongjian Zhu
AI-Generated Synthetic Patient Data Helps in Evaluating Daratumumab Treatment Benefit in Multiple Myeloma Subgroups
  • DOI:
    10.1182/blood-2024-208174
  • 发表时间:
    2024-11-05
  • 期刊:
  • 影响因子:
  • 作者:
    Merav Bar;Andrew J. Cowan;Qian Shi;Zixuan Zhao;Zexin Ren;Feifang Hu;Will Ma
  • 通讯作者:
    Will Ma
Optimal responses-adaptive designs based on efficiency, ethic, and cost
基于效率、道德和成本的最佳响应自适应设计
  • DOI:
    10.4310/sii.2018.v11.n1.a9
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Chen Feng;Feifang Hu
  • 通讯作者:
    Feifang Hu

Feifang Hu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Feifang Hu', 18)}}的其他基金

Inference for High Dimensional Quantile Regression
高维分位数回归的推理
  • 批准号:
    1712760
  • 财政年份:
    2017
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
New Covariate-Adjusted Response-Adaptive Designs and Associated Methods for Statistical Inference
新的协变量调整响应自适应设计和相关统计推断方法
  • 批准号:
    1612970
  • 财政年份:
    2016
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
CAREER: A new and pragmatic framework for modeling and predicting conditional quantiles in data-sparse regions
职业:一种新的实用框架,用于在数据稀疏区域建模和预测条件分位数
  • 批准号:
    1525692
  • 财政年份:
    2014
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
Adaptive Design Based upon Covariate Information: New Designs and Their Properties
基于协变量信息的自适应设计:新设计及其属性
  • 批准号:
    1442192
  • 财政年份:
    2013
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Adaptive Design Based upon Covariate Information: New Designs and Their Properties
基于协变量信息的自适应设计:新设计及其属性
  • 批准号:
    1209164
  • 财政年份:
    2012
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
Adaptive Designs and Sequential Monitoring
自适应设计和顺序监控
  • 批准号:
    0907297
  • 财政年份:
    2009
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant
CAREER: Use of Covariate Information in Adaptive Designs
职业:在自适应设计中使用协变量信息
  • 批准号:
    0349048
  • 财政年份:
    2004
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Continuing Grant
Power, Variability, and Optimality in Adaptive Designs
自适应设计中的强大功能、可变性和最优性
  • 批准号:
    0204232
  • 财政年份:
    2002
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Standard Grant

相似国自然基金

供水-发电-生态环境纽带系统协同发展下的水资源利用率阈值估计
  • 批准号:
    52379022
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
发展快速极小时间溯祖新方法估计近期和远古群体历史
  • 批准号:
    32270674
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
几类非局部刚性发展方程数值方法的后验误差估计及自适应计算
  • 批准号:
    12271367
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
倒向随机发展方程高效数值方法及其应用
  • 批准号:
    11901565
  • 批准年份:
    2019
  • 资助金额:
    21.1 万元
  • 项目类别:
    青年科学基金项目
发展型奇异摄动问题局部间断Galerkin方法的局部误差研究
  • 批准号:
    11801396
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developments in estimation of the functional changes of transporters and drug metabolizing enzymes during renal failure
肾衰竭期间转运蛋白和药物代谢酶功能变化评估的进展
  • 批准号:
    16K18934
  • 财政年份:
    2016
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Developments of rapid immuno-chromato kits for caries-risk estimation using anti-GTF monoclonal antibodies
使用抗 GTF 单克隆抗体开发用于龋齿风险评估的快速免疫色谱试剂盒
  • 批准号:
    15591950
  • 财政年份:
    2003
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal parameter estimation and further developments in crossed classification and robust credibility
最优参数估计以及交叉分类和鲁棒可信度的进一步发展
  • 批准号:
    217649-1999
  • 财政年份:
    2002
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Discovery Grants Program - Individual
RESARCH ON NEW DEVELOPMENTS OF ESTIMATION THEORY AND THEIR APPLICATIONS IN MULTI-DIMENSIONAL STATISTICAL MODELS
估计理论新进展及其在多维统计模型中的应用研究
  • 批准号:
    13680371
  • 财政年份:
    2001
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimal parameter estimation and further developments in crossed classification and robust credibility
最优参数估计以及交叉分类和鲁棒可信度的进一步发展
  • 批准号:
    217649-1999
  • 财政年份:
    2001
  • 资助金额:
    $ 11.65万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了