New Low-Temperature Synthetic Routes to Functional Perovskite and Semiconductor Nanocrystals

功能性钙钛矿和半导体纳米晶体的新低温合成路线

基本信息

  • 批准号:
    0906745
  • 负责人:
  • 金额:
    $ 34.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-15 至 2013-01-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)TECHNICAL SUMMARY:The goal of this research program is to develop rational synthetic methods for the low temperature, solution phase synthesis of functional inorganic nanocrystals for energy applications. Lower temperature reactions are energy efficient and offer the added benefit of providing kinetic pathways to novel nanocrystal morphologies, compositions, and crystal structures. In the first low temperature method, a new type of chalcogen source (i.e., dialkyl dichalcogenides) is being explored for the synthesis of well-defined semiconductor nanocrystals. The key to this method is the thermal instability of dialkyl dichalcogenides, particularly in the presence of Lewis acids and primary amines. This synthetic methodology is being applied to a wide variety of semiconductor nanocrystals using dialkyl peroxides and dialkyl disulfide, diselenide, and ditelluride reagents, and the resulting optoelectronic and electrochemical properties of the nanocrystals are being measured as a function of size and composition. The second synthetic methodology is based on the kinetically controlled vapor phase delivery of water into a bimetallic alkoxide solution to promote the hydrolysis, nucleation and growth of small perovskite nanocrystals at low temperatures. The key to this method is the slow hydrolysis of a bimetallic alkoxide precursor, which circumvents the requirement for high temperature solid-solid diffusion for crystallization. By taking advantage of this synthesis method, a series of perovskite nanocrystals are being synthesized at very low temperatures and the dielectric properties of the nanocrystals are being studied as a function of their size and composition.NON-TECHNICAL SUMMARY:Despite over fifty years of developments in the field of solid-state chemistry, there are still only a limited number of ways to synthesize materials ? the majority of which require high temperature conditions. As such, there is a need to develop rational methodologies for the synthesis of functional materials under low temperature conditions, much in the same way that organic chemists have developed a very extensive and diverse toolbox of bench-top reactions. Because of the functional size and shape dependent properties of nanoscale (10-9 meters) materials, the impetus to design low temperature synthesis methods also applies to the synthesis of nanocrystals. The goal of this research program is to design new routes to functional nanocrystals using these energy-efficient design principles, which will be significant in the ultimate development of solar energy conversion and energy storage technologies based on these nanocrystal platforms. Integrated into this research plan is the educational objective of bringing the core concepts of solid-state chemistry to students at the university, community college, and high school levels. At the university level, integration of solid-state chemistry into the curriculum will be accomplished via a solid-state chemistry component in a course on Inorganic Structure and Bonding, which is taken by graduate students and advanced undergraduates. At the community college and high school levels, students from underrepresented and economically disadvantaged groups in Los Angeles County will be targeted for participation in a summer internship. Using solar energy conversion and energy storage as compelling working examples, a summer internship will be developed that exposes students to cutting edge and interdisciplinary research occurring at the university setting. This program will consist of a combination of discussions and hands-on work, will illustrate how the scientific method is applied to laboratory research in the context of solid-state chemistry and nanotechnology, and will expose the students to opportunities available to them in science and engineering at the university level and beyond.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。技术概述:该研究项目的目标是开发用于能源应用的功能性无机纳米晶体的低温、固相合成的合理合成方法。低温反应是节能的,并且提供了新的纳米晶体形态、成分和晶体结构的动力学途径的额外好处。在第一种低温方法中,正在探索一种新型的硫源(即二烷基二硫族化合物),用于合成定义良好的半导体纳米晶体。这种方法的关键是二烷基二硫族化合物的热不稳定性,特别是在路易斯酸和伯胺的存在下。这种合成方法被应用于使用二烷基过氧化物和二烷基二硫化物、二硒化物和二碲化物试剂的各种半导体纳米晶体中,并且所得到的纳米晶体的光电和电化学性能正在作为尺寸和组成的函数进行测量。第二种合成方法是基于动力学控制气相将水输送到双金属醇盐溶液中,以促进低温下小钙钛矿纳米晶体的水解、成核和生长。该方法的关键是双金属醇盐前驱体的缓慢水解,它绕过了高温固-固扩散结晶的要求。利用这种合成方法,在极低的温度下合成了一系列钙钛矿纳米晶体,并研究了纳米晶体的介电性能与它们的大小和组成的关系。非技术总结:尽管固体化学领域有了50多年的发展,但合成材料的方法仍然有限。其中大多数需要高温条件。因此,有必要开发在低温条件下合成功能材料的合理方法,就像有机化学家开发了一个非常广泛和多样化的台式反应工具箱一样。由于纳米级(10-9米)材料的功能尺寸和形状依赖特性,设计低温合成方法的动力也适用于纳米晶体的合成。该研究项目的目标是利用这些节能设计原理设计出功能性纳米晶体的新路线,这将对基于这些纳米晶体平台的太阳能转换和储能技术的最终发展具有重要意义。这项研究计划的教育目标是将固态化学的核心概念带给大学、社区学院和高中的学生。在大学阶段,将固态化学整合到课程中,将通过研究生和高级本科生选修的无机结构和键合课程中的固态化学部分来完成。在社区大学和高中阶段,来自洛杉矶县代表性不足和经济弱势群体的学生将成为参加暑期实习的目标。利用太阳能转换和能源储存作为令人信服的工作实例,将开发一个暑期实习,使学生接触到大学环境中发生的前沿和跨学科研究。该课程将包括讨论和实践工作的结合,将说明如何在固态化学和纳米技术的背景下将科学方法应用于实验室研究,并将向学生展示他们在大学及以后的科学和工程领域的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Brutchey其他文献

Richard Brutchey的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Brutchey', 18)}}的其他基金

Revealing the Mechanisms of Bulk Material Dissolution in Thiol-Amine Solvent Mixtures Toward the Solution Deposition of Chalcogenide Thin Films
揭示硫醇-胺溶剂混合物中散装材料溶解对硫属化物薄膜溶液沉积的机制
  • 批准号:
    1904719
  • 财政年份:
    2019
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
Solution Processing of Bulk Semiconductors with a Thiol-Amine Solvent Mixture
使用硫醇胺溶剂混合物对块状半导体进行溶液加工
  • 批准号:
    1506189
  • 财政年份:
    2015
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
tert-Butyl Chalcogenides as Useful Synthetic Tools for the Synthesis and Surface Modification of Semiconductor Nanocrystals
叔丁基硫属化物作为半导体纳米晶体合成和表面改性的有用合成工具
  • 批准号:
    1205712
  • 财政年份:
    2012
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant

相似国自然基金

MSCEN聚集体抑制CD127low单核细胞铜死亡治疗SLE 的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CD9+CD55low脂肪前体细胞介导高脂诱导脂肪组织炎症和2型糖尿病的作用和机制研究
  • 批准号:
    82270883
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
新型PDL1+CXCR2low中性粒细胞在脉络膜新生血管中的作用及机制研究
  • 批准号:
    82271095
  • 批准年份:
    2022
  • 资助金额:
    56 万元
  • 项目类别:
    面上项目
CD21low/-CD23-B细胞亚群在间质干细胞治疗慢性移植物抗宿主病中的作用机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
探究Msi1+Lgr5neg/low肠道干细胞抵抗辐射并驱动肠上皮再生的新机制
  • 批准号:
    82270588
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
m6A去甲基化酶FTO通过稳定BRD9介导表观重塑在HIF2α(low/-)肾透明细胞癌中的作用机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    54.7 万元
  • 项目类别:
    面上项目
circEFEMP1招募PRC2促进HOXA6启动子组蛋白甲基化修饰调控Claudin4-Low型TNBC迁移侵袭和转移的作用机制
  • 批准号:
    82002807
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
上皮间质转化在Numb-/low前列腺癌细胞雄激素非依赖性中的作用及机制
  • 批准号:
    82003061
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Bach2调控CD45RA-Foxp3low T细胞影响B细胞功能及其在系统性红斑狼疮中作用的机制研究
  • 批准号:
    81873863
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

An assessment of low-temperature, ductile lithospheric deformation using existing broadband seismic data from around South Island, New Zealand
使用新西兰南岛周围现有的宽带地震数据评估低温、延性岩石圈变形
  • 批准号:
    2316757
  • 财政年份:
    2023
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Standard Grant
New precursors for low-temperature thermal atomic layer deposition (ALD) of the late transition metals
后过渡金属低温热原子层沉积(ALD)的新前驱体
  • 批准号:
    554093-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
New Frontier of Fruit Postharvest Physiology-Low Temperature modulated Ripening and its application
水果采后生理新前沿——低温调控成熟及其应用
  • 批准号:
    20H02977
  • 财政年份:
    2020
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
CAREER: New Algorithms to Simulate Ultracold Matter Out of Equilibrium and Redefine the Low-Temperature Frontier
职业:模拟失衡超冷物质并重新定义低温前沿的新算法
  • 批准号:
    1848304
  • 财政年份:
    2019
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
development of new system for energy recovery on Low-temperature waste heat using Leidenfrost phenomena
利用莱顿弗罗斯特现象开发低温废热能量回收新系统
  • 批准号:
    18K19125
  • 财政年份:
    2018
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Low-temperature synthesis of oxynitrides for development of new functional materials
低温合成氮氧化物开发新型功能材料
  • 批准号:
    17H04950
  • 财政年份:
    2017
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Low-Temperature Conversions of Complex Solid Precursors in Ionic Liquids: New Compounds and Insights into Reaction Principles
离子液体中复杂固体前体的低温转化:新化合物和对反应原理的见解
  • 批准号:
    376551415
  • 财政年份:
    2017
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Priority Programmes
New Frontier in fruit physiology - Ethylene independent fruit ripening by low-temperature exposure
水果生理学的新前沿 - 通过低温暴露实现不依赖乙烯的水果成熟
  • 批准号:
    16H04873
  • 财政年份:
    2016
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Realistic Treatment of Plasma-Surface Interactions in Simulations of Low Temperature Plasmas: From a New Diagnostic to Optimization of Process Control
低温等离子体模拟中等离子体-表面相互作用的现实处理:从新的诊断到过程控制的优化
  • 批准号:
    1601080
  • 财政年份:
    2016
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Continuing Grant
New type of guiding principle of heterogeneous microstructural control of aerospace Ti alloys for enhancing low-temperature-high-strain-rate-superplasticity
航空钛合金异质组织控制增强低温高应变率超塑性的新型指导原则
  • 批准号:
    16H04537
  • 财政年份:
    2016
  • 资助金额:
    $ 34.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了