Stochastic Processes in non-Euclidean spaces
非欧几里得空间中的随机过程
基本信息
- 批准号:0907293
- 负责人:
- 金额:$ 11.83万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-06-01 至 2013-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). Brownian motion on finite dimensional Riemannian manifolds is well studied, and the deep relationship between the Laplace-Beltrami operator and the geometry of a space and the properties of Brownian motion and its heat kernel measure on that space are well understood.This proposal is devoted to the study of certain generalizations of this paradigm, including the study of diffusions on sub-Riemannian manifolds and certain infinite dimensional Lie groups, Levy processes on Lie groups, and Brownian motion on ``tree space,'' a continuous space with geometric and combinatorial structures which has biological applications. These studies lie in the intersection of analysis, geometry, and probability, and the study of solutions to stochastic differential equations and their generators is a uniting framework of many of the problems considered.Probability provides a powerful tool in analysis and geometry, and stochastic processes give tractable models for many physical and biological phenomena. For example, Brownian motion gives a way of understanding heat flow on a space. The PI will investigate properties of several stochastic processes on spaces which occur naturally in some physical or biological applications. Sub-Riemannian manifolds arise in classical and quantum mechanics, and certain geometric quantities are best understood in this setting.Infinite dimensional spaces appear in physics in quantum field theory and string theory. Levy processes have recently been a subject of intense research, due in part to new applications in finance. ``Tree space'' models the space of all phylogenetic trees.The research during this grant period should have implications in various mathematical disciplines, such as harmonic analysis, functional analysis, and mathematical physics, and should find applications in other scientific fields, such as physics and biology.
该奖项是根据2009年《美国复苏和再投资法案》(公法111-5)提供资金的。本文对有限维黎曼流形上的布朗运动进行了深入的研究,并深入了解了Laplace-Beltrami算子与空间几何之间的深层联系,以及该空间上的布朗运动及其热核测度的性质。本文致力于研究这一范式的某些推广,包括研究次黎曼流形和某些无限维李群上的扩散,李群上的Levy过程,以及‘树空间’上的布朗运动。‘树空间’是一个具有几何和组合结构的连续空间,具有生物学应用。这些研究涉及分析、几何和概率的交叉,随机微分方程解及其生成元的研究是许多所考虑问题的统一框架。概率为分析和几何提供了强大的工具,而随机过程为许多物理和生物现象提供了易于处理的模型。例如,布朗运动提供了一种理解空间上热流的方法。PI将研究在某些物理或生物应用中自然发生的空间上的几个随机过程的性质。次黎曼流形出现在经典和量子力学中,某些几何量在这个背景下得到了最好的理解。无限维空间出现在量子场论和弦理论中的物理学中。征税过程最近一直是密集研究的主题,部分原因是在金融领域的新应用。“树空间”模拟了所有系统发育树的空间。在这一授予期内的研究应该涉及不同的数学学科,如调和分析、泛函分析和数学物理,并应在其他科学领域找到应用,如物理和生物学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tai Melcher其他文献
Tai Melcher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tai Melcher', 18)}}的其他基金
2017 Seminar on Stochastic Processes
2017年随机过程研讨会
- 批准号:
1663552 - 财政年份:2017
- 资助金额:
$ 11.83万 - 项目类别:
Standard Grant
CAREER: Heat kernel measures in infinite dimensions
职业:无限维度的热核测量
- 批准号:
1255574 - 财政年份:2013
- 资助金额:
$ 11.83万 - 项目类别:
Continuing Grant
相似国自然基金
Submesoscale Processes Associated with Oceanic Eddies
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
相似海外基金
Applications of stochastic analysis to statistical inference for stationary and non-stationary Gaussian processes
随机分析在平稳和非平稳高斯过程统计推断中的应用
- 批准号:
2311306 - 财政年份:2023
- 资助金额:
$ 11.83万 - 项目类别:
Standard Grant
Investigating Properties of Non-Markov Stochastic Processes with Application to Modelling the Dynamics of Financial Markets
研究非马尔可夫随机过程的性质及其在金融市场动态建模中的应用
- 批准号:
2328227 - 财政年份:2020
- 资助金额:
$ 11.83万 - 项目类别:
Studentship
Numerical analysis for SDE and non-colliding stochastic processes
SDE 和非碰撞随机过程的数值分析
- 批准号:
17H06833 - 财政年份:2017
- 资助金额:
$ 11.83万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Deepening statistical inference for stochastic processes via locally non-Gaussian quasi-likelihood
通过局部非高斯拟似然深化随机过程的统计推断
- 批准号:
17K05367 - 财政年份:2017
- 资助金额:
$ 11.83万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
stochastic geometric approach to stochastic processes in non equilibrium statistical mechanics
非平衡统计力学中随机过程的随机几何方法
- 批准号:
25610021 - 财政年份:2013
- 资助金额:
$ 11.83万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Time series analysis for abnormality test and modeling of corrplex system and a study for the derived model from a view point of the theory of stochastic processes
随机过程理论视角下复杂系统异常测试与建模的时间序列分析及推导模型研究
- 批准号:
14340030 - 财政年份:2002
- 资助金额:
$ 11.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Inference for stochastic processes with long range dependence, recursive estimation for some non-linear non-gaussian processes
具有长程依赖性的随机过程的推理,某些非线性非高斯过程的递归估计
- 批准号:
42983-1995 - 财政年份:1998
- 资助金额:
$ 11.83万 - 项目类别:
Discovery Grants Program - Individual
A study of identification problem for continuous model in phenomena of complex system based on the theory of Langevin equations from the viewpoint of the theory of stochastic processes
从随机过程理论的角度研究基于朗之万方程理论的复杂系统现象中的连续模型辨识问题
- 批准号:
10440026 - 财政年份:1998
- 资助金额:
$ 11.83万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Inference for stochastic processes with long range dependence, recursive estimation for some non-linear non-gaussian processes
具有长程依赖性的随机过程的推理,某些非线性非高斯过程的递归估计
- 批准号:
42983-1995 - 财政年份:1997
- 资助金额:
$ 11.83万 - 项目类别:
Discovery Grants Program - Individual
Inference for stochastic processes with long range dependence, recursive estimation for some non-linear non-gaussian processes
具有长程依赖性的随机过程的推理,某些非线性非高斯过程的递归估计
- 批准号:
42983-1995 - 财政年份:1996
- 资助金额:
$ 11.83万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




