Towards Scaffolds for Rational Self Assembly: Investigating Nucleation Dependent Growth and Self-Healing of Co-Assembled Amyloid Nanotubes

走向合理自组装的支架:研究共组装淀粉样纳米管的成核依赖性生长和自我修复

基本信息

  • 批准号:
    0907435
  • 负责人:
  • 金额:
    $ 45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

ID: MPS/DMR/BMAT(7623) 0907435 PI: Berland, Keith ORG: Emory UniversityTitle: Towards Scaffolds for Rational Self Assembly: Investigating Nucleation Dependent Growth and Self-Healing of Co-Assembled Amyloid NanotubesINTELLECTUAL MERIT: The PIs have observed that prior to ordered assembly, the amyloid forming peptides aggregate into several-micron sized aggregates with morphology that is distinct from the ordered fibers or nanotubes, and that the growth appears to originate from structural reorganization of peptide conformations and interactions within these aggregate structures. These preliminary data represent the first direct observation of amyloid nucleation, and working towards a deeper understanding of the physical mechanisms governing nucleation, growth, and self-healing properties of these nanomaterials is essential for advancing their potential use as functional, rationally-designed platforms for molecular self-assembly. A model system has been developed in which fluorescent peptides are incorporated into the highly ordered assemblies, and these constructs provide a unique opportunity to deepen understanding of the fundamental pathways for assembly. By combining this well defined and structurally characterized model system with state-of-the-art fluorescence microscopy, the research plan has the capability to dramatically advance understanding of these materials. Specifically, it is proposed to apply fluorescence imaging, lifetime imaging, fluctuation spectroscopy, and photobleaching measurements to define amyloid nucleation, elongation and growth as well as the self-healing properties of amyloid nanotubes. The focus will be: Aim 1: Amyloid nucleation. Characterize aggregate structures, structural changes, and associated kinetics involved in amyloid nucleation. These measurements will exploit the experimental model system which has uncovered the first direct observation of amyloid nucleation. Aim 2: Nanotube elongation and growth. Directly observe elongation kinetics and make quantitative measurements of single assembly growth rates to better characterize propagation processes. These measurements can determine whether growth is uni- or bidirectional, and coupled with lifetime microscopy can determine whether mature structures are directly assembled or result from relaxation processes following initial assembly. Aim 3: Peptide exchange and self healing of amyloid structures. Useful nanoscale biomaterials require self-healing capabilities, by which damaged regions can reassemble or self-repair. Initial evidence suggests amyloid structures possess this capability. This aim focuses on detailed experiments that are required to understand the self-repair mechanisms.BROADER IMPACTS: The proposed studies represent a collaborative effort of the Berland (Department of Physics) and Lynn (Department of Chemistry) labs at Emory University. The interdisciplinary nature of the research provides the opportunity for new training opportunities, both within the Emory community and beyond. A strength of the teaching and research collaboration is that the students are trained in the physical spectroscopy, chemical synthesis, and the analysis techniques necessary to work on interdisciplinary research topics. The co-PI organizes a series of freshman seminar courses called ?Origins of ORDER? (On Recent Discoveries by Emory Researchers) that introduce undergraduate students to cutting edge research. The PI and a recent postdoctoral associate have developed materials for this course, which were used to teach freshmen about fluorescence and fluctuations, and their applications in modern research. Both PIs for this proposal have a history of supervising undergraduate research projects, providing academic year and summer student training each year. Beyond the Emory community both PIs have also used the research laboratory to share enthusiasm and excitement for scientific research with those outside the University, including interacting with researchers from other institutions as well as high school students and high school teachers.
ID:MPS/DMR/BMAT(7623)0907435 PI:Berland,基思 ORG:埃默里大学标题:走向合理的自组装支架:研究共组装淀粉样蛋白纳米管的成核依赖性生长和自我修复PI已经观察到,在有序组装之前,淀粉样蛋白形成肽聚集成几微米大小的聚集体,其形态与有序纤维或纳米管不同,并且生长似乎起源于肽构象的结构重组和这些聚集体结构内的相互作用。 这些初步数据代表了对淀粉样蛋白成核的首次直接观察,努力更深入地了解这些纳米材料的成核、生长和自愈特性的物理机制,对于推进其作为功能性、合理设计的平台的潜在用途至关重要分子自组装。已经开发了一个模型系统,其中荧光肽被纳入到高度有序的组件,这些结构提供了一个独特的机会,加深理解的基本途径组装。通过将这种定义明确、结构特征明确的模型系统与最先进的荧光显微镜相结合,该研究计划有能力大大提高对这些材料的理解。具体而言,它建议应用荧光成像,寿命成像,波动光谱,和光漂白测量来定义淀粉样蛋白的成核,伸长和生长,以及淀粉样蛋白纳米管的自愈性能。重点将是:目标1:淀粉样蛋白成核。 表征淀粉样蛋白成核中涉及的聚集体结构、结构变化和相关动力学。这些测量将利用实验模型系统,该系统首次发现了淀粉样蛋白成核的直接观察结果。目标2:纳米管的伸长和生长。 直接观察伸长动力学,并对单个组件的生长速率进行定量测量,以更好地表征增殖过程。这些测量可以确定生长是单向的还是双向的,并且与寿命显微镜相结合可以确定成熟的结构是直接组装的还是由初始组装后的弛豫过程产生的。目的3:肽交换和淀粉样结构的自我修复。有用的纳米级生物材料需要自我修复能力,通过这种能力,受损区域可以重新组装或自我修复。最初的证据表明淀粉样结构具有这种能力。这个目标的重点是详细的实验,需要了解自我修复机制。更广泛的IMPLEMENTARY:拟议的研究代表了埃默里大学Berland(物理系)和林恩(化学系)实验室的合作努力。该研究的跨学科性质提供了新的培训机会,无论是在埃默里社区内外的机会。教学和研究合作的优势是,学生在物理光谱学,化学合成和跨学科研究课题工作所需的分析技术进行培训。合作PI组织了一系列的新生研讨会课程,称为?秩序的起源?(On埃默里大学研究人员的最新发现),向本科生介绍前沿研究。PI和最近的一位博士后助理为这门课程开发了材料,用于教授新生荧光和波动及其在现代研究中的应用。 这项提案的两个PI都有监督本科生研究项目的历史,每年提供学年和暑期学生培训。 除了埃默里社区,两个PI还使用研究实验室与大学以外的人分享科学研究的热情和兴奋,包括与其他机构的研究人员以及高中学生和高中教师互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Keith Berland其他文献

Amyloid Nucleation: Evidence for Nucleating Cores within Unstructured Protein Aggregates
  • DOI:
    10.1016/j.bpj.2010.12.1313
  • 发表时间:
    2011-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Neil R. Anthony;David G. Lynn;Keith Berland
  • 通讯作者:
    Keith Berland
Investigating Amyloid Nucleation and Growth with Fluctuation Microscopy
  • DOI:
    10.1016/j.bpj.2009.12.3570
  • 发表时间:
    2010-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Keith Berland;Yan Liang;Neil Anthony
  • 通讯作者:
    Neil Anthony

Keith Berland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Keith Berland', 18)}}的其他基金

Fluorescence Fluctuation Spectroscopy to Investigate Molecular Recognition Specificity
荧光涨落光谱研究分子识别特异性
  • 批准号:
    0817966
  • 财政年份:
    2008
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant

相似海外基金

Developing functionalised electrospun scaffolds to exploit neural stromal interactions in wound healing
开发功能化电纺支架以利用神经基质相互作用促进伤口愈合
  • 批准号:
    2910663
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Say Yes to NO: The Next Generation Scaffolds with Localized and Sustained Nitric Oxide (NO) Delivery for Central Nervous System Regeneration
对“否”说“是”:具有局部和持续一氧化氮 (NO) 输送的下一代支架,用于中枢神经系统再生
  • 批准号:
    EP/X027198/2
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Fellowship
ICF Mechanical Property Optimisation of Magnesium Alloy Wires for Bioresorbable Vascular Scaffolds for the Treatment of Peripheral Arterial Disease
用于治疗外周动脉疾病的生物可吸收血管支架镁合金丝的 ICF 机械性能优化
  • 批准号:
    MR/Z503897/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Research Grant
Novel in vitro endometrial scaffolds to investigate embryo implantation and early development
用于研究胚胎植入和早期发育的新型体外子宫内膜支架
  • 批准号:
    NC/Y500550/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Training Grant
Polymer Nanocomposites using Discrete Nanoparticles and Bicontinuous Scaffolds: New Strategies for Connective Morphologies and Property Control
使用离散纳米粒子和双连续支架的聚合物纳米复合材料:连接形态和性能控制的新策略
  • 批准号:
    2407300
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Topological Design of Novel Foldamer-Polymer Scaffolds for Applications in Drug Delivery and to Probe New Agents with Biological Activity
新型折叠聚合物支架的拓扑设计,用于药物输送和探索具有生物活性的新药物
  • 批准号:
    2902781
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Studentship
Exploration of T- and B-cell receptors to eliminate the foreign body reaction from synthetic polymeric scaffolds
探索 T 细胞和 B 细胞受体以消除合成聚合物支架的异物反应
  • 批准号:
    24K19917
  • 财政年份:
    2024
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: RUI: Elucidating Design Rules for non-NRPS Incorporation of Amino Acids on Polyketide Scaffolds
合作研究:RUI:阐明聚酮化合物支架上非 NRPS 氨基酸掺入的设计规则
  • 批准号:
    2300890
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Continuing Grant
Nanoscale Coronas: Surface Chemistry and Reactivity on Particle Scaffolds
纳米级电晕:粒子支架上的表面化学和反应性
  • 批准号:
    2305039
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Standard Grant
Examination of scaffolds for engraftment of transplanted cells using anal sphincter injury model rats
使用肛门括约肌损伤模型大鼠检查移植细胞植入支架
  • 批准号:
    23K08122
  • 财政年份:
    2023
  • 资助金额:
    $ 45万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了