Mineralized Electrospun Chitosan Nanofibers as Bone Scaffolds

矿化静电纺壳聚糖纳米纤维作为骨支架

基本信息

  • 批准号:
    0907572
  • 负责人:
  • 金额:
    $ 31.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2012-08-31
  • 项目状态:
    已结题

项目摘要

ID: MPS/DMR/BMAT(7623) 0907572 PI: Wegst, Ulrike ORG: Drexel UniversityTitle: Mineralized Electrospun Chitosan Nanofibers as Bone ScaffoldsThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).INTELLECTUAL MERIT: The overall aim of the proposal is to test the hypothesis that by mineralizing chitosan fibers, we can create a ceramic-based bone substitute material that combines the strength and stiffness of the ceramic phase with an increased toughness through fiber reinforcement. The intention is to provide materials for optimal repair of craniofacial and orthopedic skeletal defects, which would otherwise require a bone graft from a second surgical site. To test this hypothesis the following research aims are proposed: Aim 1: To investigate a combinatorial approach on bulk films of chitosan, chitin, and a blend of the two to determine the critical parameters for mineralization. Aim 2: To optimize mineralization of chitosan and chitin fiber mats. Aim 3: To test the mechanical properties of individual non-mineralized and mineralized chitosan fibers. Aim 4: To test cytocompatibility of the novel mineralized chitosan and chitin films and fibers, by assessing adhesion, spreading (morphology), and proliferation of human osteoblasts and evaluating their functional, osteogenic differentiation. More specifically it is proposed to create a 3-D mineralized fiber composite using chitosan and chitin fibers, and hydroxyapatite (HA, Ca10(PO4)6(OH)2), tri-calcium-phosphate (beta-TCP, Ca3(PO4) 2), or calcium carbonate (CaCO3) minerals to create a mineralized fiber composite that is strong, stiff and tough enough to substitute for natural bone. The choice of chitin and chitosan as a fiber material is due to their exceptional mechanical properties and biocompatibility. The advantage of chitosan is its availability, versatility and ease in processing. Its disadvantage for hard tissue applications is that it swells when exposed to moisture and forms mechanically instable hydrogels. Chitosan fibers can be highly crosslinked and as a result are chemically and mechanically stable and better suited for hard tissue applications. The three minerals, HA, beta-TCP and CaCO3 were chosen for this proposal because they have already successfully been used as osteogenic/osteoinductive biomaterials.BROADER IMPACTS: There are several benefits of this research to society that result from the development of bone substitute materials which mimic the natural material so well that it is fully integrated into the natural bone. The better property match of biomaterial to bone means that the implant can be better integrated into natural tissue, resulting in a higher implant. Research results will be disseminated broadly through campus-wide seminar series, at national and international conferences, in publications in high quality peer-reviewed journals to enhance scientific and technological understanding. Teaching, training and learning will happen through new courses at both the graduate and undergraduate level. Every attempt will be made to involve minorities in the research, teaching, and outreach activities. The PIs will promote the active recruitment and training of women and underrepresented minorities engineers through collaboration with existing Drexel programs: Drexel STAR (Students Tackling Advanced Research) undergraduate students, SEED Program (Summer Engineering Experience @ Drexel) for high school students, REU (Research Experience for Undergraduates), and RET (Research Experience for Teachers) high school teachers. Further work will be to work with the Louis Stokes Alliance for Minority Participation (AMP) to actively recruit future lab personnel. As part of this project, new instrumentation for materials synthesis, micromechanical testing in a controlled environment, and biocompatibility testing will be established at Drexel. Additionally, in situ mechanical testing in SEM and FIB will greatly add to the central characterization facility of the Materials Science and Engineering Department at Drexel University. New experimental facilities for material testing, characterization and synthesis will be designed, built and used.
ID:MPS/DMR/BMAT(7623)0907572 PI:Wegst,Ulrike ORG:Drexel大学名称:矿化电纺壳聚糖纳米纤维作为骨支架该奖项是根据2009年美国复苏和再投资法案资助的(公法111-5).知识产权:该提案的总体目标是检验以下假设:通过矿化壳聚糖纤维,我们可以创造一个陶瓷-基于陶瓷相的骨替代材料,其结合了陶瓷相的强度和刚度以及通过纤维增强而增加的韧性。其目的是提供用于颅面和整形骨骼缺损的最佳修复的材料,否则将需要来自第二手术部位的骨移植物。为了验证这一假设,提出了以下研究目标:目的1:探讨一种组合的方法对散装膜的壳聚糖,甲壳素,和两者的混合物,以确定矿化的关键参数。 目的2:优化壳聚糖和甲壳素纤维毡的矿化性能。 目的3:测试未矿化和矿化壳聚糖纤维的力学性能。 目标4:通过评估人成骨细胞的粘附、铺展(形态学)和增殖并评价其功能性成骨分化,测试新型矿化壳聚糖和甲壳素膜和纤维的细胞相容性。 更具体地,提出使用壳聚糖和几丁质纤维以及羟基磷灰石(HA,Ca 10(PO 4)6(OH)2)、磷酸三钙(β-TCP,Ca 3(PO 4)2)或碳酸钙(CaCO 3)矿物来产生3-D矿化纤维复合材料,以产生足够坚固、坚硬和坚韧以替代天然骨的矿化纤维复合材料。选择甲壳素和壳聚糖作为纤维材料是因为它们具有优异的机械性能和生物相容性。壳聚糖的优点是它的可用性,多功能性和易于加工。其对于硬组织应用的缺点是当暴露于湿气时其溶胀并形成机械不稳定的水凝胶。壳聚糖纤维可以高度交联,因此具有化学和机械稳定性,更适合硬组织应用。这三种矿物质,HA,β-TCP和CaCO 3被选择用于这个提议,因为它们已经成功地被用作成骨/骨诱导生物材料。更广泛的重要性:这项研究对社会有几个好处,这是由于骨替代材料的发展,模仿天然材料,它是完全融入天然骨。生物材料与骨更好的性能匹配意味着植入物可以更好地整合到天然组织中,从而产生更高的植入物。研究成果将通过全校范围的系列研讨会、国家和国际会议、高质量同行评审期刊的出版物广泛传播,以增强科学和技术理解。 教学、培训和学习将通过研究生和本科生的新课程进行。将尽一切努力让少数群体参与研究、教学和外联活动。PI将通过与现有的德雷克塞尔项目合作,促进积极招聘和培训女性和代表性不足的少数民族工程师:德雷克塞尔星星(学生解决高级研究)本科生,SEED计划(夏季工程经验@德雷克塞尔)高中生,REU(本科生研究经验)和RET(教师研究经验)高中教师。 进一步的工作将是与路易斯斯托克斯少数民族参与联盟(AMP)合作,积极招募未来的实验室人员。作为该项目的一部分,将在Drexel建立用于材料合成、受控环境中的微机械测试和生物相容性测试的新仪器。此外,SEM和FIB中的原位机械测试将大大增加德雷克塞尔大学材料科学与工程系的中心表征设施。将设计、建造和使用用于材料测试、表征和合成的新实验设施。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antonios Zavaliangos其他文献

Multi-phenomena simulation of electric field assisted sintering
  • DOI:
    10.1007/s10853-008-2744-5
  • 发表时间:
    2008-07-01
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Brandon McWilliams;Antonios Zavaliangos
  • 通讯作者:
    Antonios Zavaliangos
Understanding the Effect of Environmental History on Bilayer Tablet Interfacial Shear Strength
  • DOI:
    10.1007/s11095-012-0969-0
  • 发表时间:
    2013-01-19
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Gerard Klinzing;Antonios Zavaliangos
  • 通讯作者:
    Antonios Zavaliangos
An In-line, High Sensitivity, Non-contact Sensor for the Detection of Initiation of Sticking
  • DOI:
    10.1007/s12247-018-9367-4
  • 发表时间:
    2018-12-15
  • 期刊:
  • 影响因子:
    2.700
  • 作者:
    James Thomas;Antonios Zavaliangos
  • 通讯作者:
    Antonios Zavaliangos
Adhesion of powder onto tools during compaction: A numerical study
  • DOI:
    10.1016/j.powtec.2022.117644
  • 发表时间:
    2022-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    David Freiberg;Antonios Zavaliangos
  • 通讯作者:
    Antonios Zavaliangos
Sticking Detection by Repeated Compactions on a Single Tablet
  • DOI:
    10.1208/s12249-023-02694-6
  • 发表时间:
    2023-11-21
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    James Thomas;Phuong Bui;Antonios Zavaliangos
  • 通讯作者:
    Antonios Zavaliangos

Antonios Zavaliangos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antonios Zavaliangos', 18)}}的其他基金

MRI: Acquisition of High Power and Resolution X-ray Microscopy System for Advanced Characterization, Non-Destructive Evaluation, and Cross-Disciplinary Research & Innovation
MRI:采购高功率和分辨率 X 射线显微镜系统,用于高级表征、无损评估和跨学科研究
  • 批准号:
    2216175
  • 财政年份:
    2022
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant
GOALI: Processing and Optimization of Multilayered Pharmaceutical Tablets
GOALI:多层药片的加工和优化
  • 批准号:
    0900476
  • 财政年份:
    2009
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a High Resolution X-ray Tomography Unit
MRI:获取高分辨率 X 射线断层扫描装置
  • 批准号:
    0521309
  • 财政年份:
    2005
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant
Collaborative Proposal: Manufacturing of Nanocrystalline Bulk Materials by Field Activated Sintering
合作提案:通过场激活烧结制造纳米晶块体材料
  • 批准号:
    0400168
  • 财政年份:
    2004
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant
U.S.-France Cooperative Research: Anisotropy in Shrinkage during Sintering
美法合作研究:烧结收缩的各向异性
  • 批准号:
    0129226
  • 财政年份:
    2002
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant
GOALI: Experimental and Theoretical Studies on Compaction with Application on Pharmaceutical Powders
目标:药物粉末压实的实验和理论研究
  • 批准号:
    0100063
  • 财政年份:
    2001
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant
CAREER: Mechanics of Densification and Development of Residual Stresses in Heterogeneous Powder Mixtures with Application to Functionally Gradient Materials
职业:异质粉末混合物中的致密化力学和残余应力的发展及其在功能梯度材料中的应用
  • 批准号:
    9624698
  • 财政年份:
    1996
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant
Advanced Materials Specimen Preparation Facility
先进材料样品制备设施
  • 批准号:
    9512362
  • 财政年份:
    1995
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant

相似海外基金

Developing functionalised electrospun scaffolds to exploit neural stromal interactions in wound healing
开发功能化电纺支架以利用神经基质相互作用促进伤口愈合
  • 批准号:
    2910663
  • 财政年份:
    2024
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Studentship
Electrospun hollow fibres for muscle tissue engineering in a soft bioreactor chamber
用于软生物反应器室肌肉组织工程的电纺中空纤维
  • 批准号:
    NC/Y500604/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Training Grant
Electrospun mucoadhesive matrices for polymersome-mediated mRNA vaccine delivery
用于聚合物囊泡介导的 mRNA 疫苗递送的电纺粘膜粘附基质
  • 批准号:
    BB/Y007514/1
  • 财政年份:
    2024
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Research Grant
Development of an electrospun antimicrobial coated tampon for management of bacterial vaginosis biofilm
开发用于治疗细菌性阴道病生物膜的静电纺丝抗菌涂层卫生棉条
  • 批准号:
    BB/Y512357/1
  • 财政年份:
    2023
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Training Grant
I-Corps: Electrospun Nanofiber
I-Corps:静电纺纳米纤维
  • 批准号:
    2308519
  • 财政年份:
    2023
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Standard Grant
Development of Cell Culture Inserts and 3D In Vitro Tissue Models Utilizing Novel Electrospun Scaffolds
利用新型静电纺丝支架开发细胞培养插入物和 3D 体外组织模型
  • 批准号:
    10697932
  • 财政年份:
    2023
  • 资助金额:
    $ 31.53万
  • 项目类别:
Electrospun Amino Acid-based Poly(ester urea) Biodegradable Barrier Membrane for Guided Bone Regeneration
用于引导骨再生的电纺氨基酸基聚(酯脲)生物可降解屏障膜
  • 批准号:
    10827655
  • 财政年份:
    2023
  • 资助金额:
    $ 31.53万
  • 项目类别:
AMAZE : Advanced MOF-loaded Air-pollution control and Zero-emission Electrospun filters
AMAZE:先进的 MOF 负载空气污染控制和零排放静电纺丝过滤器
  • 批准号:
    10078131
  • 财政年份:
    2023
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Collaborative R&D
Development of an Electrospun Antimicrobial Coated Tampon for Management of Bacterial Vaginosis Biofilm
开发用于治疗细菌性阴道病生物膜的静电纺丝抗菌涂层卫生棉条
  • 批准号:
    2894641
  • 财政年份:
    2023
  • 资助金额:
    $ 31.53万
  • 项目类别:
    Studentship
Implantable Electrospun Cell Chamber Device with Immune-Evasive Properties for Beta Cell Replacement Therapy
用于β细胞替代疗法的具有免疫规避特性的植入式静电纺丝细胞室装置
  • 批准号:
    10756256
  • 财政年份:
    2023
  • 资助金额:
    $ 31.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了