Problems in Complex Network Dynamics

复杂网络动力学问题

基本信息

  • 批准号:
    0908286
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).TECHNICAL SUMMARYThis award supports theoretical research and education on the statistical physics of networks. The research will be focused on network dynamics, and on three important questions: (1) For a given network structure, how can the dynamics on the network be designed to optimize desired properties? (2) How does network structure effect, or influence, the dynamics of networks? (3) How are networks assembled, or how can they be assembled, in order to have desired dynamics, and, similarly, how do, or can, they adapt or evolve to optimize desired dynamical features? By answering these questions, the PI aims to transform understanding of the dynamics of natural and engineered networks, and transform the design and control of new and existing networks. Natural networks are ubiquitous, extending from granular materials to aspects of biological cells and systems. The PI aims to answer fundamental questions about emergent behavior in condensed matter and biological systems. These questions lie at the heart of many of the technological and scientific questions that cut across disciplines. The first set of problems concerns two important optimization problems: 1.) How to best route transport on complex networks when there is congested traffic. Solutions of this problem obtained by maximizing the betweenness of any node will be explored and compared to real-world data. 2.) Community detection in complex networks through maximizing modularity based on either static or dynamic behavior of the network. The PI will pursue an algorithmic improvement and a statistical approach to interpreting the results. As an application for these community detection methods, the PI will study micro RNA expression data in mice in order to help understand their biological function.The second set of problems studies adaptive dynamics of complex networks in which the topology of the network and the dynamics on the network simultaneously evolve in response to each other. The PI will model the growth of fungus networks. Funguses adapt their structure due to the location of nutrients and the ability to transport nutrients effectively throughout the network. The PI will explore the evolutionary development of canalization in Boolean networks. Canalization is an important form of robustness found in developmental organisms.The third set of problems will study the application of random matrix theory to the dynamics of complex networks. Specifically, we will investigate how perturbing matrices in various random matrix ensembles affects the spectral properties of the ensembles. Spectral properties control many of the essential structural and dynamical properties of complex systems. The ensembles that will be studied include those describing complex networks of various structures. Additionally, the statistical predictions of random matrix theory will be applied to understand the results obtained for the other two sets of problems.This award contributes to multi-disciplinary efforts at the University of Houston in Computational and Network Science. It provides an interdisciplinary learning experience for students; they will be trained in broadly applicable analytical and computational skills. The research will be done collaboratively with a diverse, international group of theorists, and experimentalists from Germany, Australia, and Houston. The PI is strongly committed to involving students from under-represented groups in this project, including women, ethnic minorities, and persons with disabilities. NON-TECHNICAL SUMMARYThis award supports theoretical research and education with a focus to develop the principles that govern phenomena that emerge in networks with immediate application to biological systems and materials. The notion of a network is an abstract concept that enables the representation and analysis of diverse complex interacting systems. Common examples include the power-grid, phone lines, the Internet, and social networks, such as those describing acquaintanceships, collaborations, and terrorists. Many biological systems and materials and physical systems can be viewed to be structured as networks leading to deeper insights into their fundamental nature. The PI aims to discover fundamental principles of the dynamics of networks that will apply to diverse physical systems. The PI will focus on problems at the interface of condensed matter physics and biology and more traditional topics of statistical physics to achieve this goal. The research is theoretical and computational and may have impact on diverse complex systems and across disciplines. This award contributes to multi-disciplinary efforts at the University of Houston in Computational and Network Science. It provides an interdisciplinary learning experience for students; they will be trained in broadly applicable analytical and computational skills. The research will be done collaboratively with a diverse, international group of theorists, and experimentalists from Germany, Australia and Houston. The PI is strongly committed to involving students from under-represented groups in this project, including women, ethnic minorities, and persons with disabilities.
该奖项根据 2009 年美国复苏和再投资法案(公法 111-5)提供资助。技术摘要该奖项支持网络统计物理的理论研究和教育。该研究将集中于网络动力学,以及三个重要问题:(1)对于给定的网络结构,如何设计网络的动力学以优化所需的属性? (2) 网络结构如何影响或影响网络的动态? (3) 网络是如何组装的,或者如何组装它们,以获得所需的动态特性,同样,它们如何或能够适应或进化以优化所需的动态特性?通过回答这些问题,PI 旨在转变对自然和工程网络动态的理解,并转变新网络和现有网络的设计和控制。自然网络无处不在,从颗粒材料延伸到生物细胞和系统的各个方面。 PI 旨在回答有关凝聚态物质和生物系统中的紧急行为的基本问题。这些问题是许多跨学科的技术和科学问题的核心。第一组问题涉及两个重要的优化问题: 1.) 当流量拥塞时,如何在复杂网络上最好地路由传输。将探索通过最大化任何节点的介数获得的该问题的解决方案,并将其与现实世界的数据进行比较。 2.) 通过基于网络的静态或动态行为最大化模块化来进行复杂网络中的社区检测。 PI 将寻求算法改进和统计方法来解释结果。作为这些群落检测方法的应用,PI 将研究小鼠中的 micro RNA 表达数据,以帮助了解其生物学功能。第二组问题研究复杂网络的自适应动态,其中网络的拓扑和网络上的动态同时相互响应而演化。 PI 将模拟真菌网络的生长。由于营养物质的位置以及在整个网络中有效运输营养物质的能力,真菌会调整其结构。 PI 将探索布尔网络中运河化的演进发展。运河化是发育有机体中鲁棒性的一种重要形式。第三组问题将研究随机矩阵理论在复杂网络动力学中的应用。具体来说,我们将研究各种随机矩阵系综中的扰动矩阵如何影响系综的光谱特性。光谱特性控制着复杂系统的许多基本结构和动力学特性。将研究的集成包括那些描述各种结构的复杂网络的集成。此外,随机矩阵理论的统计预测将应用于理解其他两组问题所获得的结果。该奖项有助于休斯敦大学在计算和网络科学方面的多学科努力。它为学生提供跨学科的学习体验;他们将接受广泛适用的分析和计算技能的培训。该研究将与来自德国、澳大利亚和休斯顿的多元化国际理论家和实验家小组合作完成。 PI 坚定地致力于让来自弱势群体的学生参与该项目,包括妇女、少数民族和残疾人。非技术摘要该奖项支持理论研究和教育,重点是发展管理网络中出现的现象的原则,并立即应用于生物系统和材料。网络的概念是一个抽象概念,可以表示和分析各种复杂的交互系统。常见的例子包括电网、电话线、互联网和社交网络,例如那些描述熟人、合作和恐怖分子的网络。许多生物系统、材料和物理系统可以被视为结构化的网络,从而可以更深入地了解其基本性质。 PI 旨在发现适用于不同物理系统的网络动力学的基本原理。为了实现这一目标,PI 将重点关注凝聚态物理和生物学的交叉领域问题以及更传统的统计物理主题。该研究是理论和计算的,可能对不同的复杂系统和跨学科产生影响。该奖项有助于休斯顿大学在计算和网络科学领域的多学科努力。它为学生提供跨学科的学习体验;他们将接受广泛适用的分析和计算技能的培训。该研究将与来自德国、澳大利亚和休斯顿的多元化国际理论家和实验家小组合作完成。 PI 坚定地致力于让来自弱势群体的学生参与该项目,包括妇女、少数民族和残疾人。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kevin Bassler其他文献

Kevin Bassler的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kevin Bassler', 18)}}的其他基金

Non-Equilibrium Statistical Mechanics of Co-Evolving Complex Systems
共同演化复杂系统的非平衡统计力学
  • 批准号:
    1507371
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Symmetry and the Dynamics of Complex Networks and Systems
复杂网络和系统的对称性和动力学
  • 批准号:
    1206839
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Self-Organized Dynamics of Superconducting Flux
超导通量的自组织动力学
  • 批准号:
    0406323
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
ITR-(NHS+ASE)-(Sim): Self-Organization of Complex Network Dynamics for Efficiency and Robustness
ITR-(NHS ASE)-(Sim):复杂网络动态的自组织以提高效率和鲁棒性
  • 批准号:
    0427538
  • 财政年份:
    2004
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Cellular Models of Nonlinear Flux Flow, Vortex Rivers, and Noise
非线性通量流、涡流和噪声的细胞模型
  • 批准号:
    0074613
  • 财政年份:
    2000
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似国自然基金

TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
  • 批准号:
    32370337
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
二甲双胍对于模型蛋白、γ-secretase、Complex I自由能曲面的影响
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高脂饮食损伤巨噬细胞ndufs4表达激活Complex I/mROS/HIF-1通路参与溃疡性结肠炎研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
线粒体参与呼吸中枢pre-Bötzinger complex呼吸可塑性调控的机制研究
  • 批准号:
    31971055
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
北温带中华蹄盖蕨复合体Athyrium sinense complex的物种分化
  • 批准号:
    31872651
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
边缘鳞盖蕨复合体种 (Microlepia marginata complex) 的网状进化及物种形成研究
  • 批准号:
    31860044
  • 批准年份:
    2018
  • 资助金额:
    37.0 万元
  • 项目类别:
    地区科学基金项目
益气通络颗粒及主要单体通过调节cAMP/PKA/Complex I通路治疗气虚血瘀证脑梗死的机制研究
  • 批准号:
    81703747
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
生物钟转录抑制复合体 Evening Complex 调控茉莉酸诱导叶片衰老的分子机制研究
  • 批准号:
    31670290
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
延伸子复合物(Elongator complex)的翻译调控作用
  • 批准号:
    31360023
  • 批准年份:
    2013
  • 资助金额:
    51.0 万元
  • 项目类别:
    地区科学基金项目
Complex I 基因变异与寿命的关联及其作用机制的研究
  • 批准号:
    81370445
  • 批准年份:
    2013
  • 资助金额:
    70.0 万元
  • 项目类别:
    面上项目

相似海外基金

Capacity Assessment, Tracking, & Enhancement through Network Analysis: Developing a Tool to Inform Capacity Building Efforts in Complex STEM Education Systems
能力评估、跟踪、
  • 批准号:
    2315532
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Variable Structure Complex Network Systems with Smart Grid Applications
具有智能电网应用的变结构复杂网络系统
  • 批准号:
    DP240100830
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Projects
VALIDATE: A vaccine R&D Network for complex intracellular pathogens
验证:疫苗 R
  • 批准号:
    MR/Y000773/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Managing Retail Supply Chain Network: Demand Learning and Complex Optimization
管理零售供应链网络:需求学习和复杂优化
  • 批准号:
    DGECR-2022-00475
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Launch Supplement
Investigations of Lyme spirochete transmission as a complex network of microbial and ecological interactions
莱姆螺旋体传播作为微生物和生态相互作用的复杂网络的研究
  • 批准号:
    10596793
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
SaTC: CORE: Small: Empowering Network Attack Detection with Complex Graph Modeling
SaTC:核心:小型:通过复杂图建模增强网络攻击检测能力
  • 批准号:
    2154962
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Environmental impacts of complex effluent release to a model prairie aquatic network
复杂污水排放到模型草原水生网络的环境影响
  • 批准号:
    570812-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Alliance Grants
Neural Network Models for Modelling, Design and Optimization of Structurally Complex Entities in Biomedical Data Science
用于生物医学数据科学中结构复杂实体建模、设计和优化的神经网络模型
  • 批准号:
    RGPIN-2021-03879
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Complex genetic interaction network rewiring and dynamics
复杂的遗传相互作用网络重新布线和动力学
  • 批准号:
    DGECR-2022-00225
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Launch Supplement
Investigations of Lyme spirochete transmission as a complex network of microbial and ecological interactions
莱姆螺旋体传播作为微生物和生态相互作用的复杂网络的研究
  • 批准号:
    10703410
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了