Self-Organized Dynamics of Superconducting Flux
超导通量的自组织动力学
基本信息
- 批准号:0406323
- 负责人:
- 金额:$ 18.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2004
- 资助国家:美国
- 起止时间:2004-07-15 至 2007-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award supports theoretical research on fundamental condensed matter physics. The collective transport of granular objects driven through a disordered medium is often intermittent, governed by avalanches. The avalanches can be small, or system-wide, or they can exhibit scaling behavior. Understanding avalanche dynamics is of fundamental theoretical and technological importance to a variety of subjects including river hydrology, superconductivity, solar flares, and Internet traffic. Much of the theoretical effort to understand avalanche dynamics has focused on the behavior of cellular "sandpile" models. Cellular models provide a coarse-grained physical description that naturally incorporates both the granularity of the objects and the threshold nature of the breakdown process. They also often have the benefit of being numerically tractable, making it possible to study their behavior over a range of length and time scales, which is needed to detect the presence or absence of scaling, and to determine the universal features of the dynamics. Discrete, cellular models will be used to study the nonlinear transport properties of magnetic vortices driven through a type II superconductor, and to make quantifiable connection with experiments. It has been suggested that, because of the repulsive interactions between vortices, and the attractive pinning between vortices and lattice defects or impurities, the dynamics of quantized vortices in a superconductor is analogous to that of grains in a pile of sand. Additionally, the over-damped motion of vortices in most experiments is captured by the threshold dynamics of most sandpile type cellular models. Therefore, the driven dynamics of magnetic vortices is an ideal physical system to attempt to model with cellular models. Furthermore, a number of experiments characterizing vortex dynamics present opportunities for establishing and exploring the connection between cellular models and the large-scale behavior of superconducting vortices. By establishing that connection, the universal aspects of the dynamics of a variety of other nonequilibrium systems may also become better understood.This research builds on existing results that have developed a cellular model for vortex dynamics, and demonstrated that it captures at least some of the large-scale properties, including some quantitative results, of the nonlinear transport in superconductors that are observed experimentally. In the new work, large-scale numerical simulations will be used to further explore the connection between the universal dynamics of cellular models and of superconducting vortices by extending our existing model to study a variety of novel phenomena observed in type II superconductors. In particular, the existing model will be extended to account for thermal effects caused by the resistive heating of vortex motion, and to describe the three-dimensional nature of vortices. Studies are proposed to model experiments that measure the scaling properties of flux penetration, including the formation of dendrites, and of distributions of voltage noise and vortex flow. Additionally, studies exploring the relationship of the universal dynamics of the cellular model, and of vortex dynamics, to other physical systems are proposed. Novel numerical algorithms will be employed to achieve massively parallel simulations of the models. Collaborations with experimental groups are also planned.Graduate students will be involved in the project and the research will enhance efforts to incorporate computation into the graduate physics curriculum. An interactive website will be developed to promote outreach. Talks will be given at local high schools. %%%This grant supports fundamental condensed matter physics. The research investigates, primarily using computational methods, the transport of magnetic vortices in superconductors. This problem is of interest for both basic and applied reasons. The theoretical approach utilizes the connection between this problem and that of the motions of grains of sand in a sandpile. A strong educational and outreach program is planned as part of this project.***
该奖项支持基础凝聚态物理的理论研究。 通过无序介质驱动的粒状物体的集体传输通常是间歇性的,受雪崩控制。 雪崩可以很小,也可以是整个系统范围内的,也可以表现出缩放行为。 了解雪崩动力学对于河流水文学、超导性、太阳耀斑和互联网流量等多种学科具有基础理论和技术重要性。 理解雪崩动力学的大部分理论工作都集中在细胞“沙堆”模型的行为上。 细胞模型提供了粗粒度的物理描述,自然地结合了对象的粒度和分解过程的阈值性质。 它们通常还具有在数值上易于处理的优点,使得研究它们在一定范围的长度和时间尺度上的行为成为可能,这是检测是否存在缩放以及确定动力学的普遍特征所必需的。离散细胞模型将用于研究通过 II 型超导体驱动的磁涡流的非线性输运特性,并与实验建立可量化的联系。 有人认为,由于涡旋之间的排斥相互作用,以及涡旋与晶格缺陷或杂质之间的吸引钉扎,超导体中量子化涡旋的动力学类似于一堆沙子中的颗粒的动力学。 此外,大多数实验中涡流的过阻尼运动是由大多数沙堆型细胞模型的阈值动力学捕获的。 因此,磁涡流的驱动动力学是尝试用细胞模型进行建模的理想物理系统。 此外,许多表征涡旋动力学的实验为建立和探索细胞模型与超导涡旋的大规模行为之间的联系提供了机会。 通过建立这种联系,各种其他非平衡系统动力学的普遍方面也可能得到更好的理解。这项研究建立在现有结果的基础上,开发了涡动力学的细胞模型,并证明它至少捕获了实验观察到的超导体中非线性输运的一些大规模特性,包括一些定量结果。 在这项新工作中,大规模数值模拟将通过扩展我们现有的模型来研究在 II 型超导体中观察到的各种新现象,从而进一步探索细胞模型的普遍动力学与超导涡旋之间的联系。 特别是,现有模型将扩展到考虑涡流运动的电阻加热引起的热效应,并描述涡流的三维性质。 提出了研究模型来测量通量渗透的缩放特性,包括枝晶的形成以及电压噪声和涡流的分布。 此外,还提出了探索细胞模型的普遍动力学和涡动力学与其他物理系统的关系的研究。 将采用新颖的数值算法来实现模型的大规模并行模拟。 还计划与实验小组合作。研究生将参与该项目,该研究将加强将计算纳入研究生物理课程的努力。 将开发一个互动网站来促进外展活动。 演讲将在当地高中进行。 %%%这项资助支持基础凝聚态物理。 该研究主要使用计算方法研究超导体中磁涡流的传输。 这个问题由于基本原因和应用原因而引起人们的兴趣。 理论方法利用了该问题与沙堆中沙粒运动问题之间的联系。 作为该项目的一部分,计划实施强有力的教育和外展计划。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kevin Bassler其他文献
Kevin Bassler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kevin Bassler', 18)}}的其他基金
Non-Equilibrium Statistical Mechanics of Co-Evolving Complex Systems
共同演化复杂系统的非平衡统计力学
- 批准号:
1507371 - 财政年份:2016
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Symmetry and the Dynamics of Complex Networks and Systems
复杂网络和系统的对称性和动力学
- 批准号:
1206839 - 财政年份:2012
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
ITR-(NHS+ASE)-(Sim): Self-Organization of Complex Network Dynamics for Efficiency and Robustness
ITR-(NHS ASE)-(Sim):复杂网络动态的自组织以提高效率和鲁棒性
- 批准号:
0427538 - 财政年份:2004
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Cellular Models of Nonlinear Flux Flow, Vortex Rivers, and Noise
非线性通量流、涡流和噪声的细胞模型
- 批准号:
0074613 - 财政年份:2000
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
相似海外基金
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
- 批准号:
RGPIN-2019-05234 - 财政年份:2022
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
- 批准号:
RGPIN-2019-05234 - 财政年份:2021
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
- 批准号:
RGPIN-2019-05234 - 财政年份:2020
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
- 批准号:
RGPIN-2019-05234 - 财政年份:2019
- 资助金额:
$ 18.6万 - 项目类别:
Discovery Grants Program - Individual
Mathematics of Collective Behavior: From Self-Organized Dynamics to Fluid Turbulence
集体行为数学:从自组织动力学到流体湍流
- 批准号:
1813351 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Standard Grant
Wnt pathway dynamics and their role in generating self-organized ectodermal patterns
Wnt 通路动力学及其在生成自组织外胚层模式中的作用
- 批准号:
10078612 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Wnt pathway dynamics and their role in generating self-organized ectodermal patterns
Wnt 通路动力学及其在生成自组织外胚层模式中的作用
- 批准号:
10316204 - 财政年份:2018
- 资助金额:
$ 18.6万 - 项目类别:
Dynamics of photoexcited charge carriers in self-organized organic bulk semiconductors
自组织有机体半导体中光激发载流子的动力学
- 批准号:
220464899 - 财政年份:2012
- 资助金额:
$ 18.6万 - 项目类别:
Research Units
Nonlinear Transport, Degenerate Diffusion, Critical Regularity and Self-Organized Dynamics
非线性输运、简并扩散、临界规律性和自组织动力学
- 批准号:
1008397 - 财政年份:2010
- 资助金额:
$ 18.6万 - 项目类别:
Continuing Grant
An analysis of the coordination dynamics giving rise to self-organized hippocampal thete rhythms
引起自组织海马节律的协调动力学分析
- 批准号:
401421-2010 - 财政年份:2010
- 资助金额:
$ 18.6万 - 项目类别:
Canadian Graduate Scholarships Foreign Study Supplements