Collaborative Research on Mathematical Constructs for Multiphase Complex Fluids
多相复杂流体数学结构的合作研究
基本信息
- 批准号:0908330
- 负责人:
- 金额:$ 17.59万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-07-01 至 2013-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This research project will develop a suite of mathematical constructs for the hydrodynamics of multiphase complex fluids. Complex fluids are distinguished from viscous fluids (e.g., water, oil) in that they require resolution of microstructure to resolve behavior in even the simplest of experiments. For single-phase complex fluids, the signature phenomena of shear thinning (viscosity falls with increased shear rate) and normal stress generation in shear (oppositely translating parallel plates experience a force along their mutual normal) are not captured by the Navier-Stokes model for viscous fluids. Yet, these features are successfully predicted by the kinetic theory of single-phase polymeric liquids. When combined to form multiphase mixtures, either in Nature (biofilms or lung airway mucosal layers) or synthetically (nano-rods or nano-platelets dispersed in a polymer matrix), the different fluid phases are prone to separate. Other forces (chemical bonds and weaker attractive potentials) compete with phase separation to sustain the mixture, which are only reasonably understood for equilibrium states. Outstanding challenges arise, and predictive tools do not yet exist, in far-from-equilibrium conditions typical of biofilms in streams or pipes, lung airway mucus layers propelled toward the larynx by coordinated cilia and tidal breathing, and flow processing of polymer nano-composites into films or molds. A mathematically consistent kinetic theory for generic multiphase complex fluids, incorporating the physics and chemistry of individual phases, their mixtures and their hydrodynamics, will be developed in this research project. A kinetic theory is only useful when accompanied by clear protocols for the derivation of reduced models applicable to benchmark experiments, numerical algorithms for each model reduction, and direct simulations to test the predictive capability of the theory with blind experiments. These constructs will be developed, along with inference methods so that all physical parameters of a multiphase complex fluid model can be experimentally determined. The generality and diversity of the theory will be demonstrated by detailed specificity to hydrodynamics of biofilms, mucosal layers, and polymer nano-composites. Polymer nano-composites are new synthetic materials with extraordinary promise, consisting of a cocktail of a traditional polymer with property-boosting nano-rods or platelets. Insight into why nano-composites are truly special can be appreciated from a simple fact: one percent volume fraction of nano-platelets in a single raindrop of polymer matrix introduces an entire football field of new surface area! The novel features of number and size of particles together with new surface contact between the particle phase and the polymer phase overwhelm current experimental and theoretical capabilities. Flow is impossible to probe experimentally (particles are too small and too numerous to track orientation and position) and there is no predictive theory, and therefore no simulation tools, to guide material design. This project will develop the requisite theoretical and computational capabilities. Similar challenges and limitations exist for mixtures of multiphase complex fluids arising in Nature, such as biofilms in streams, ponds, and pipes and mucosal layers between the air and tissue in lung airways. This research project will develop a mathematical blueprint for theory and simulation of the hydrodynamics of generic multiphase complex fluid mixtures. In this strategy, details of each phase in the mixture and the chemical and physical interactions between phases serve as inputs, together with the necessary experimental data to test the theory. The formalism will produce the theory specific to the multiphase fluid, the approach to derive model reductions for benchmark experiments, and numerical methods and simulations. The general methods will be brought to bear on three diverse multiphase materials: biofilms, mucosal layers, and polymer nano-composites. These mathematical constructs will provide predictive tools for: the design of novel high performance polymer nano-composite materials for defense and the aerospace industry; remediation strategies for biofilms in industrial pipelines; and, improved pulmonary health through simulations of mucus transport prior to and during drug and physical therapies.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该研究项目将为多相复杂流体的流体动力学开发一套数学结构。 复杂流体与粘性流体(例如,水、油),因为它们需要微观结构的解析来解析即使是最简单的实验中的行为。对于单相复杂流体,粘性流体的Navier-Stokes模型没有捕捉到剪切稀化(粘度随着剪切速率的增加而福尔斯下降)和剪切中的法向应力产生(反向平移的平行板经受沿着其相互法线的力)的特征现象。 然而,这些功能是成功地预测单相聚合物液体的动力学理论。 当组合以形成多相混合物时,无论是在自然界(生物膜或肺气道粘膜层)还是合成(分散在聚合物基质中的纳米棒或纳米片),不同的流体相易于分离。 其他力(化学键和较弱的吸引势)与相分离竞争以维持混合物,这只能合理地理解平衡状态。 突出的挑战出现了,预测工具还不存在,在远离平衡的条件下,典型的生物膜在流或管道,肺气道粘液层推向喉的协调纤毛和潮汐呼吸,和流动加工的聚合物纳米复合材料成膜或模具。 在本研究项目中,将开发一种数学上一致的通用多相复杂流体的动力学理论,该理论结合了各个相、其混合物及其流体力学的物理和化学。 一个动力学理论是唯一有用的,当伴随着明确的协议,适用于基准实验,每个模型减少,数值算法的推导简化模型,并直接模拟测试预测能力的理论与盲实验。 这些结构将被开发,沿着推理方法,使多相复杂流体模型的所有物理参数可以通过实验确定。 该理论的一般性和多样性将通过对生物膜、粘膜层和聚合物纳米复合材料的流体力学的详细特异性来证明。 聚合物纳米复合材料是一种具有非凡前景的新型合成材料,由传统聚合物与性能增强纳米棒或片晶的混合物组成。 了解为什么纳米复合材料是真正的特殊可以从一个简单的事实欣赏:百分之一的体积分数的纳米片在一个雨滴的聚合物基质介绍了整个足球场的新的表面积! 颗粒的数量和尺寸的新特征以及颗粒相和聚合物相之间的新表面接触压倒了当前的实验和理论能力。 流动不可能通过实验进行探测(颗粒太小,数量太多,无法跟踪方向和位置),并且没有预测理论,因此没有模拟工具来指导材料设计。 该项目将发展必要的理论和计算能力。 对于自然界中产生的多相复杂流体的混合物存在类似的挑战和限制,例如溪流、池塘和管道中的生物膜以及肺气道中的空气和组织之间的粘膜层。 该研究项目将为一般多相复杂流体混合物的流体动力学理论和模拟开发数学蓝图。在这种策略中,混合物中每个相的细节以及相之间的化学和物理相互作用作为输入,以及必要的实验数据来测试理论。形式主义将产生特定于多相流体的理论,基准实验的模型简化方法,以及数值方法和模拟。 一般的方法将带来承担三个不同的多相材料:生物膜,粘膜层,和聚合物纳米复合材料。 这些数学结构将提供预测工具:用于国防和航空航天工业的新型高性能聚合物纳米复合材料的设计;工业管道中生物膜的修复策略;以及通过模拟药物和物理治疗之前和期间的粘液运输来改善肺部健康。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Wang其他文献
Density functional theory study on the transition metal atoms encapsulated C20 cage clusters
过渡金属原子封装C20笼团簇的密度泛函理论研究
- DOI:
10.1088/2053-1591/aacc89 - 发表时间:
2018-06 - 期刊:
- 影响因子:2.3
- 作者:
Zhen Zhao;Zhi Li;Qi Wang - 通讯作者:
Qi Wang
Synthesis and electromagnetic absorption properties of Fe3O4@C nanofibers/bismaleimide nanocomposites
Fe3O4@C纳米纤维/双马来酰亚胺纳米复合材料的合成及电磁吸波性能
- DOI:
10.1007/s10854-016-5857-7 - 发表时间:
2017-02 - 期刊:
- 影响因子:0
- 作者:
Ping Chen;Qi Wang;Chun Lu;Caixia Jia - 通讯作者:
Caixia Jia
Steam Gasification of Catalytic Pyrolysis Char for Hydrogen-rich Gas Production
催化热解炭蒸汽气化生产富氢气体
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Wu-xing Sun;Yan Zhou;Qi Wang;Shu-rong Wang - 通讯作者:
Shu-rong Wang
Fabrication of visible-light active Fe2O3-GQDs/NF-TiO2 composite film with highly enhanced photoelectrocatalytic performance
具有高度增强光电催化性能的可见光活性Fe2O3-GQDs/NF-TiO2复合薄膜的制备
- DOI:
10.1016/j.apcatb.2016.11.046 - 发表时间:
2017-05 - 期刊:
- 影响因子:22.1
- 作者:
Qi Wang;Naxin Zhu;Engin Liu;Chenlu Zhang;John C. Crittenden;Yi Zhang;Yanqing Cong - 通讯作者:
Yanqing Cong
Degradation rather than warming delays onset of reproductive phenology of annual Chenopodium glaucum on the Tibetan Plateau
退化而不是变暖延迟了青藏高原一年生灰藜繁殖物候的开始
- DOI:
10.1016/j.agrformet.2021.108688 - 发表时间:
2021-12 - 期刊:
- 影响因子:6.2
- 作者:
Ji Suonan;Shujuan Cui;Wangwang Lv;Wenying Wang;Bowen Li;Peipei Liu;Huan Hong;Yang Zhou;Qi Wang;Lili Jiang;Tsechoe Dorji;Shiping Wang - 通讯作者:
Shiping Wang
Qi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Wang', 18)}}的其他基金
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
- 批准号:
2332057 - 财政年份:2023
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
Collaborative Research: SAI-R: Dynamical Coupling of Physical and Social Infrastructures: Evaluating the Impacts of Social Capital on Access to Safe Well Water
合作研究:SAI-R:物理和社会基础设施的动态耦合:评估社会资本对获得安全井水的影响
- 批准号:
2228533 - 财政年份:2022
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
The 48th Northeast Bioengineering Conference
第48届东北生物工程大会
- 批准号:
2225607 - 财政年份:2022
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
I-Corps: Enhancing Sensory Processing via Noninvasive Neuromodulation
I-Corps:通过无创神经调节增强感觉处理
- 批准号:
2232149 - 财政年份:2022
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
Collaborative Research: A Whole-Community Effort to Understand Biases and Uncertainties in Using Emerging Big Data for Mobility Analysis
协作研究:全社区共同努力,了解使用新兴大数据进行出行分析时的偏差和不确定性
- 批准号:
2114197 - 财政年份:2021
- 资助金额:
$ 17.59万 - 项目类别:
Continuing Grant
Collaborative Research: Advancing STEM Online Learning by Augmenting Accessibility with Explanatory Captions and AI
协作研究:通过解释性字幕和人工智能增强可访问性,推进 STEM 在线学习
- 批准号:
2118824 - 财政年份:2021
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
SCC-IRG Track 2: Toxic-Free Footprints to Improve Community Health against Respiratory Hazards
SCC-IRG 第 2 轨道:无毒足迹改善社区健康,预防呼吸系统危害
- 批准号:
2125326 - 财政年份:2021
- 资助金额:
$ 17.59万 - 项目类别:
Continuing Grant
RAPID/Collaborative Research: High-Frequency Data Collection for Human Mobility Prediction during COVID-19
RAPID/协作研究:用于 COVID-19 期间人类流动性预测的高频数据收集
- 批准号:
2027744 - 财政年份:2020
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
CAREER: Enhancing perception and cognition while minimizing side effects through closed-loop peripheral neural stimulation
职业:通过闭环周围神经刺激增强感知和认知,同时最大限度地减少副作用
- 批准号:
1847315 - 财政年份:2019
- 资助金额:
$ 17.59万 - 项目类别:
Continuing Grant
Collaborative Research: Personalized Systems for Wayfinding for First Responders
协作研究:为急救人员提供寻路的个性化系统
- 批准号:
1761950 - 财政年份:2018
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401257 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317573 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317570 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317572 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317569 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Continuing Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
- 批准号:
2317571 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025
合作研究:会议:2024-2025 年五大湖数学物理会议
- 批准号:
2401258 - 财政年份:2024
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant
Collaborative Research: Supporting Pre-Service Teachers Mathematical Discourse through Co-Design of Teaching Simulation Tools
协作研究:通过教学模拟工具的共同设计支持职前教师的数学话语
- 批准号:
2315437 - 财政年份:2023
- 资助金额:
$ 17.59万 - 项目类别:
Standard Grant