Collaborative Research: Conference: Great Lakes Mathematical Physics Meetings 2024-2025

合作研究:会议:2024-2025 年五大湖数学物理会议

基本信息

  • 批准号:
    2401257
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

This award will support participants in the Great Lakes Mathematical Physics Meetings (GLaMP) in 2024 at Michigan State University and in 2025 at the University of Kentucky. The GLaMP meetings are typically held over 3 days in June, with an attendance of 45-50 researchers. The annual conference series, which began in 2016 at Michigan State, focuses on early-career mathematicians working in mathematical physics. Each meeting features invited talks by experts in the field, a minicourse on a topic in mathematical physics, contributed talks by participants, and an interactive career development panel. The main goals of the GLaMP series are: 1) to provide a forum for early-career researchers in mathematical physics – including advanced undergraduates, graduate students, and early-career postdoctoral scholars – to present their research and enhance their career development; 2) to maintain communication and collaboration among scientists working in mathematical physics throughout the United States and, in particular, in the greater Midwest; 3) to encourage participation by women and underrepresented minorities in the field of mathematical physics; and 4) to raise the research profile of mathematical physics within the mathematical and scientific community of the United States. All details about the 2024 meeting and links to web pages of previous GLaMP meetings can be found at https://sites.google.com/msu.edu/glamp/home. Mathematical Physics is one of the oldest scientific disciplines and is a very active field worldwide, with researchers working in both mathematics and physics departments. The roots of the field can be traced to the classical mathematics of Newton, Euler, and Gauss. In the twentieth century, there were many developments at the boundary between mathematics and physics, for example, in scattering theory, non-relativistic quantum mechanics, constructive quantum field theory, the foundations of statistical mechanics, and applications of geometry and topology to high energy physics. The field is supported by the International Association of Mathematical Physics, which organizes an international congress every three years. Although there are many mathematical physicists working in the United States, there are few regular conferences representing the field in the US. The GLaMP meetings have evolved to be the main annual meetings focused on mathematical physics in the US. Minicourse topics have included non-equilibrium quantum statistical mechanics, disordered quantum spin chains and many-body localization, non-self-adjoint operators and quantum resonances, the mathematics of aperiodic order, random matrix theory and supersymmetry techniques, quantum trajectories, and mathematical general relativity. Besides the location, we believe that the distinguishing feature of the GLaMP meeting is its emphasis on early-career researchers. The majority of contributed talks are given by early-career faculty, postdocs, and advanced graduate students. In addition to providing a forum that showcases the work of young researchers, the GLaMP meeting also offers career development opportunities, specifically through a three-hour mini-course on an active area of research given by a world-class expert and a career round table with panelists representing different career paths in mathematical physics, both in academia and in industry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项将支持参与者在五大湖数学物理会议(GLaMP)在2024年在密歇根州立大学和2025年在肯塔基州的大学。 GLaMP会议通常在6月举行,为期3天,有45-50名研究人员参加。 年度会议系列于2016年在密歇根州立大学开始,重点关注在数学物理领域工作的早期职业数学家。 每次会议都邀请该领域的专家进行演讲,关于数学物理主题的迷你课程,参与者的演讲以及互动式职业发展小组。GLaMP系列的主要目标是:1)为数学物理的早期职业研究人员提供一个论坛-包括高级本科生,研究生和早期职业博士后学者-介绍他们的研究并促进他们的职业发展; 2)保持整个美国,特别是大中西部数学物理科学家之间的沟通和合作; 3)鼓励妇女和代表性不足的少数民族参与数学物理领域;和4)提高数学物理在美国数学和科学界的研究形象。有关2024年会议的所有详细信息以及以前GLaMP会议的网页链接可以在https://sites.google.com/msu.edu/glamp/home上找到。数学物理是最古老的科学学科之一,是一个非常活跃的领域在世界范围内,与研究人员在数学和物理系工作。场的根源可以追溯到牛顿、欧拉和高斯的经典数学。 在20世纪,数学和物理之间的边界有许多发展,例如,散射理论,非相对论量子力学,建设性量子场论,统计力学的基础,以及几何和拓扑学在高能物理中的应用。该领域得到国际数学物理协会的支持,该协会每三年组织一次国际大会。虽然有许多数学物理学家在美国工作,但在美国很少有代表该领域的定期会议。GLaMP会议已经发展成为美国主要的数学物理年会。 迷你课程的主题包括非平衡量子统计力学,无序量子自旋链和多体局域化,非自伴算子和量子共振,非周期性秩序的数学,随机矩阵理论和超对称技术,量子轨迹和数学广义相对论。除了位置,我们认为GLaMP会议的显着特点是其对早期职业研究人员的重视。大部分贡献的演讲是由早期职业教师,博士后和高级研究生给出的。除了提供一个展示年轻研究人员工作的论坛外,GLaMP会议还提供职业发展机会,特别是通过一个由世界级专家提供的关于活跃研究领域的三小时迷你课程和职业圆桌会议代表数学物理学不同职业道路的小组成员,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Peter Hislop其他文献

RENORMALIZATION GROUP APPROACH IN SPECTRAL ANALYSIS AND PROBLEM OF RADIATION
光谱分析中的重正化群方法和辐射问题
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Sigal;J. Fröhlich;Volodya Buslaev;Stephen Gustafson;Peter Hislop;Walter Hunziker;M. Merkli;Yuri Ovchinnikov
  • 通讯作者:
    Yuri Ovchinnikov

Peter Hislop的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Peter Hislop', 18)}}的其他基金

Ohio River Analysis Meetings 2020-2022
俄亥俄河分析会议 2020-2022
  • 批准号:
    2000250
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative research: Ohio River Analysis Meetings 2017-2019
合作研究:2017-2019 年俄亥俄河分析会议
  • 批准号:
    1700277
  • 财政年份:
    2017
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Collaborative research: Ohio River Analysis Meetings 2014-2016
合作研究:2014-2016 年俄亥俄河分析会议
  • 批准号:
    1412057
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Young researcher support for XVIIth International Conf. on Math. Phys. Aalborg, DK August 2012
年轻研究员对第十七届国际会议的支持。
  • 批准号:
    1201297
  • 财政年份:
    2012
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Topics in the theory of random Schrodinger operators
随机薛定谔算子理论的主题
  • 批准号:
    1103104
  • 财政年份:
    2011
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Correlations and Transport for Random Schrodinger Operators
随机薛定谔算子的相关性和传输
  • 批准号:
    0803379
  • 财政年份:
    2008
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Pan-American Advanced Studies Institute on Analysis and Probability in Quantum Physics; Santiago, Chile; July 2006
泛美量子物理分析与概率高级研究所;
  • 批准号:
    0519108
  • 财政年份:
    2005
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Challenges in the Theory of Random Schrodinger Operators
随机薛定谔算子理论的挑战
  • 批准号:
    0503784
  • 财政年份:
    2005
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Spectral and Transport Properties of Random Media
随机介质的光谱和传输特性
  • 批准号:
    0202656
  • 财政年份:
    2002
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
U.S.-Sweden Workshop: Partial Differential Equations and Spectral Theory
美国-瑞典研讨会:偏微分方程和谱理论
  • 批准号:
    0204308
  • 财政年份:
    2002
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411529
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Large Language Models for Biological Discoveries (LLMs4Bio)
合作研究:会议:生物发现的大型语言模型 (LLMs4Bio)
  • 批准号:
    2411530
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Trisections Workshops: Connections with Knotted Surfaces and Diffeomorphisms
协作研究:会议:三等分研讨会:与结曲面和微分同胚的联系
  • 批准号:
    2350344
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: 2024 Aspiring PIs in Secure and Trustworthy Cyberspace
协作研究:会议:2024 年安全可信网络空间中的有抱负的 PI
  • 批准号:
    2404952
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Strategies to Mitigate Implicit Bias and Promote an Ethos of Care in the Research Enterprise: A Convening
协作研究:会议:减轻隐性偏见并促进研究企业关怀精神的策略:召开会议
  • 批准号:
    2324401
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Stratigraphic Paleobiology Field Conference
合作研究:会议:地层古生物学现场会议
  • 批准号:
    2321174
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Mathematical Sciences Institutes Diversity Initiative
合作研究:会议:数学科学研究所多样性倡议
  • 批准号:
    2317573
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400111
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400115
  • 财政年份:
    2024
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了