Weight Enumeration for Convolutional Codes

卷积码的权重枚举

基本信息

项目摘要

Gluesing-LuerssenDMS-0908379 The project aims at furthering the mathematical theory ofconvolutional codes. The error-correcting quality of these codescan be measured by a variety of distance parameters that havebeen introduced in the engineering-oriented literature. The mainidea of the project is the investigation of convolutional codesbased on the weight adjacency matrix, a single parameter thatcomprises, among other things, all those different distancemeasures. So far two major results have been established by theinvestigator: a MacWilliams Identity Theorem stating that theweight adjacency matrix of a code fully determines that of thedual code, and a theorem stating that codes without non-zeroconstant codewords and sharing the same weight adjacency matrixare monomially equivalent. These results open up new directionsin convolutional coding theory. Firstly, self-dual codes can bestudied theoretically. Besides the obvious fact that the weightadjacency matrix of a self-dual code is invariant under theMacWilliams transformation, the close link between self-dualconvolutional codes and self-dual block codes obtained bytail-biting plays a crucial role. It can be expected that,conversely, positive results for self-dual convolutional codeswill also have an impact on the theory of self-dual tail-bitingblock codes. Furthermore, the investigator explores theMacWilliams Identity and its consequences for minimalconventional and tail-biting trellises for linear block codes. The analogy in the graphical representation of trellis blockcodes and convolutional codes indeed suggests a paralleltreatment of these two classes of codes. Another subproject aimsat investigating under what conditions one may declare twoconvolutional codes identical with respect to their algebraicstructure and error-correcting capabilities. In light of theresult about monomially equivalent codes mentioned above, theweight adjacency matrix is expected to play a crucial role inthis project as well. The goal of this subproject is aclassification and a comparison of convolutional codes in thesense of classical coding theory. This project focuses on the algebraic theory oferror-correcting codes. Such codes protect data againstalteration through noise and enable the reconstruction of theoriginal data from the corrupted information. All currentstandards of data transmission and data storage have built-inerror correcting mechanisms. The most famous examples are thecompact disk player, cell phones, the internet, satellite anddeep space communication systems. The project aims at deepeningthe mathematical theory of convolutional codes. This specificclass of codes forms one of the major players in manycommunication schemes, mainly in deep space communication andother wireless data transmission schemes. With the ever-growingdemand of sophisticated information technology there is acontinuing need of a thorough mathematical theory in order toimprove the performance of such communication devices.
Gluesing-LuerssenDMS-0908379该项目旨在进一步发展卷积码的数学理论。这些码的纠错质量可以通过工程文献中介绍的各种距离参数来衡量。该项目的主要思想是研究基于权重邻接矩阵的卷积码,该矩阵是一个单一参数,其中包括所有这些不同的距离测量。到目前为止,作者已经建立了两个主要结果:一个是麦克威廉姆斯恒等式定理,它说明码的重量邻接矩阵完全决定了对偶码的重量邻接矩阵;另一个定理是,没有非常零常数码字的码和具有相同重量邻接矩阵的码是单项等价的。这些结果为卷积编码理论开辟了新的方向。首先,可以从理论上研究自对偶码。除了自对偶码的加权邻接矩阵在MacWilliams变换下是不变的这一明显事实外,自对偶卷积码与咬尾得到的自对偶分组码之间的密切联系也起着至关重要的作用。可以预期,反过来,自对偶卷积码的积极结果也将对自对偶尾比特分组码的理论产生影响。此外,研究人员还探讨了麦克威廉姆斯恒等式及其在线性分组码的最小传统格子结构和咬尾格子结构上的结果。网格分组码和卷积码的图形表示中的类比确实暗示了这两类码的并行处理。另一个子项目是研究在什么条件下可以宣布两个卷积码在代数结构和纠错能力方面是相同的。鉴于上述关于单项等价码的结果,预计权重邻接矩阵也将在该项目中发挥关键作用。这个子项目的目标是对经典编码理论意义上的卷积码进行分类和比较。本课题主要研究纠错码的代数理论。这样的编码保护数据不受噪声的干扰,并能够从损坏的信息中重建原始数据。目前所有的数据传输和数据存储标准都有内置的纠错机制。最著名的例子是紧凑型光盘播放机、手机、互联网、卫星和深空通信系统。该项目旨在深化卷积码的数学理论。这类特定的码构成了许多通信方案的主要参与者之一,主要是在深空通信和其他无线数据传输方案中。随着对尖端信息技术的需求不断增长,为了提高这类通信设备的性能,不断需要一个完善的数学理论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Heide Gluesing-Luerssen其他文献

A Convolution Algebra of Delay-Differential Operators and a Related Problem of Finite Spectrum Assignability
The Fuhrmann-Realization for Multi-Operator Systems in the Behavioral Context
Representability of the direct sum of q-matroids
  • DOI:
    10.1007/s10801-025-01438-y
  • 发表时间:
    2025-06-19
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Heide Gluesing-Luerssen;Benjamin Jany
  • 通讯作者:
    Benjamin Jany
Subbehaviors and interconnections for delay differential systems
  • DOI:
    10.1016/s1474-6670(17)36947-1
  • 发表时间:
    2000-09-01
  • 期刊:
  • 影响因子:
  • 作者:
    Heide Gluesing-Luerssen
  • 通讯作者:
    Heide Gluesing-Luerssen
Coproducts in categories of math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e22" altimg="si8.svg" class="math"miq/mi/math-matroids
数学范畴中的余积 xmlns:mml="http://www.w3.org/1998/Math/MathML" 显示="内联" id="d1e22" altimg="si8.svg" 类="数学" miq/mi/拟阵
  • DOI:
    10.1016/j.ejc.2023.103733
  • 发表时间:
    2023-08-01
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Heide Gluesing-Luerssen;Benjamin Jany
  • 通讯作者:
    Benjamin Jany

Heide Gluesing-Luerssen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Heide Gluesing-Luerssen', 18)}}的其他基金

Tail-Biting Trellis Realizations for Block Codes
块代码的咬尾网格实现
  • 批准号:
    1210061
  • 财政年份:
    2012
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Standard Grant

相似海外基金

Exploration of Crystal Surface Structures through Enumeration of Discrete Structures on an Infinite Plane and Similarity Design
通过无限平面上离散结构的枚举和相似性设计探索晶体表面结构
  • 批准号:
    23H03461
  • 财政年份:
    2023
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
LEAPS-MPS: Algebraic and Combinatorial Methods in Permutation Enumeration
LEAPS-MPS:排列枚举中的代数和组合方法
  • 批准号:
    2316181
  • 财政年份:
    2023
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Standard Grant
STTR Phase I: Feasibility of multi-layer microplate test for rapid detection and enumeration of Salmonella spp. in raw poultry and processing environment samples
STTR 第一阶段:用于快速检测和计数沙门氏菌的多层微孔板测试的可行性。
  • 批准号:
    2135699
  • 财政年份:
    2022
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Standard Grant
Enumeration and random generation of contingency tables with given margins
具有给定边距的列联表的枚举和随机生成
  • 批准号:
    DP220103074
  • 财政年份:
    2022
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Discovery Projects
Study on developing enumeration algorithms based on a supergraph technique
基于超图技术的枚举算法开发研究
  • 批准号:
    22K17849
  • 财政年份:
    2022
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
  • 批准号:
    RGPIN-2022-04273
  • 财政年份:
    2022
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Discovery Grants Program - Individual
Enumeration, random tilings and integrable probability
枚举、随机平铺和可积概率
  • 批准号:
    574832-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 18.34万
  • 项目类别:
    University Undergraduate Student Research Awards
Special orthogonal matrices: existence, enumeration, and applications
特殊正交矩阵:存在性、枚举和应用
  • 批准号:
    RGPIN-2019-05389
  • 财政年份:
    2022
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Discovery Grants Program - Individual
Game Values, Temperature, and Enumeration of Placement Games
放置游戏的游戏值、温度和枚举
  • 批准号:
    DGECR-2022-00452
  • 财政年份:
    2022
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Discovery Launch Supplement
Computable Mathematics Measured by Enumeration Degrees
用枚举度来衡量的可计算数学
  • 批准号:
    2053848
  • 财政年份:
    2021
  • 资助金额:
    $ 18.34万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了