CAREER: Inferences on Large-Scale Multiple Comparisons: The Temptation of the Fourier Kingdom

职业:大规模多重比较的推论:傅里叶王国的诱惑

基本信息

  • 批准号:
    0908613
  • 负责人:
  • 金额:
    $ 34.22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2008
  • 资助国家:
    美国
  • 起止时间:
    2008-09-05 至 2012-06-30
  • 项目状态:
    已结题

项目摘要

This research project is to create new tools for large-scale multiple comparisons. In particular, the investigator develops new tools in the frequency domain to tackle problems in this field. The project includes (a). Introduce Fourier analysis as a tool for multiple comparisons. The investigator devotes to push the boundary of the field by harnessing the power of Fourier analysis. The Fourier analysis has been repeatedly proven to be a powerful tool in many scientific areas, but has seldom been used in the field of large-scale multiple comparisons. (b). Develop practically feasible tools, and lay out theoretic frameworks for studying the optimality of the tools. (c). Extend and apply the developed methodology and theory to the analysis of massive data generated in various scientific fields, including comparative genomic hybridization (CGH), cosmology and astronomy, and gene microarray. Modern data acquisition routinely produces massive data sets in many scientific areas, e.g. genomics, astronomy, functional Magnetic Resonance Imaging (fMRI), and image processing. The vision is that advances in massive data analysis will enable scientist from various fields to quickly extract the information they need, and at the same time, benefit the statistical discipline both with a broader scope of theory and methodology but also with a deeper understanding of nature and science. The project pushes the boundary of the field by introducing new ideas for problem solving, developing new tools and novel theory, and applying the tools to other scientific fields including but not limited to comparative genomic hybridization (CGH), cosmology and astronomy, and gene microarray.
这个研究项目是为大规模的多重比较创造新的工具。特别是,研究者在频域开发新的工具来解决这一领域的问题。该项目包括(a)。介绍傅里叶分析作为多重比较的工具。研究者致力于通过利用傅里叶分析的力量来推动该领域的边界。傅里叶分析在许多科学领域被反复证明是一种强大的工具,但很少用于大规模的多重比较领域。(b)。开发实际可行的工具,并提出研究工具最优性的理论框架。(c)。扩展和应用开发的方法和理论,以分析在各个科学领域产生的大量数据,包括比较基因组杂交(CGH),宇宙学和天文学,基因微阵列。现代数据采集通常会在许多科学领域产生大量数据集,例如基因组学,天文学,功能磁共振成像(fMRI)和图像处理。其愿景是,大规模数据分析的进步将使各个领域的科学家能够快速提取他们需要的信息,同时使统计学科受益,不仅有更广泛的理论和方法范围,而且对自然和科学有更深的理解。该项目通过引入解决问题的新思路,开发新工具和新理论,并将这些工具应用于其他科学领域,包括但不限于比较基因组杂交(CGH),宇宙学和天文学以及基因微阵列,推动了该领域的边界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jiashun Jin其他文献

SCORE+ for Network Community Detection
网络社区检测 SCORE
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiashun Jin;Z. Ke;Shengming Luo
  • 通讯作者:
    Shengming Luo
Supplement of ``Estimating Network Memberships by Simplex Vertex Hunting"
《通过单纯形顶点狩猎估计网络成员资格》的补充
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiashun Jin;Z. Ke;Shengming Luo
  • 通讯作者:
    Shengming Luo
MEDLINE/ PubMed
MEDLINE/PubMed
  • DOI:
    10.1007/978-0-387-39940-9_3039
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Cornelia Caragea;V. Honavar;P. Boncz;P. Larson;S. Dietrich;Gonzalo Navarro;Bhavani Thuraisingham;Yan Luo;Ouri E. Wolfson;S. Beitzel;Eric C. Jensen;Ophir Frieder;Christian S. Jensen;N. Tradisauskas;Ethan V. Munson;A. Wun;K. Goda;Stephen E. Fienberg;Jiashun Jin;Guimei Liu;Nick Craswell;T. Pedersen;Cesare Pautasso;M. Moro;S. Manegold;B. Carminati;Marina Blanton;Sara Bouchenak;Noël de Palma;Wei Tang;Christoph Quix;M. Jeusfeld;R. K. Pon;David J. Buttler;W. Meng;P. Zezula;Michal Batko;Vlastislav Dohnal;J. Domingo;Denilson Barbosa;Ioana Manolescu;Jeffrey Xu Yu;Emmanuel Cecchet;Vivien Quéma;Xifeng Yan;G. Santucci;D. Zeinalipour;Panos K. Chrysanthis;Amol Deshpande;Carlos Guestrin;Samuel Madden;Carson Kai;R. H. Güting;Amarnath Gupta;Heng Tao Shen;G. Weikum;Ramesh Jain;Jeffrey Xu Yu;Paolo Ciaccia;K. Candan;M. Sapino;C. Meghini;F. Sebastiani;U. Straccia;F. Nack;V. S. Subrahmanian;Maria Vanina Martinez;D. Reforgiato;T. Westerveld;M. Sebillo;G. Vitiello;Maria De Marsico;K. Voruganti;C. Parent;S. Spaccapietra;Christelle Vangenot;Esteban Zimányi;Prasan Roy;S. Sudarshan;E. Puppo;Peer Kröger;Matthias Renz;H. Schuldt;Solmaz Kolahi;A. Unwin;W. Cellary
  • 通讯作者:
    W. Cellary
Estimation and Confidence Sets for Sparse Normal Mixtures
稀疏正态混合物的估计和置信集
  • DOI:
    10.1214/009053607000000334
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    T. Cai;Jiashun Jin;Mark G. Low
  • 通讯作者:
    Mark G. Low
Privacy-Preserving Data Sharing in High Dimensional Regression and Classification Settings
高维回归和分类设置中的隐私保护数据共享
  • DOI:
    10.29012/jpc.v4i1.618
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Fienberg;Jiashun Jin
  • 通讯作者:
    Jiashun Jin

Jiashun Jin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jiashun Jin', 18)}}的其他基金

Feature selection in several challenging directions
几个具有挑战性的方向的特征选择
  • 批准号:
    2310668
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Standard Grant
New Tools for Analyzing Complex Network and Text Data
用于分析复杂网络和文本数据的新工具
  • 批准号:
    2015469
  • 财政年份:
    2020
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Standard Grant
New Tools for Large-Scale Sparse Inference
用于大规模稀疏推理的新工具
  • 批准号:
    1513414
  • 财政年份:
    2015
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Continuing Grant
Rare and Weak Signals in Big Data: How to Find Them and How to Use Them
大数据中的稀有信号和微弱信号:如何找到它们以及如何使用它们
  • 批准号:
    1208315
  • 财政年份:
    2012
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Standard Grant
CAREER: Inferences on Large-Scale Multiple Comparisons: The Temptation of the Fourier Kingdom
职业:大规模多重比较的推论:傅里叶王国的诱惑
  • 批准号:
    0639980
  • 财政年份:
    2007
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Continuing Grant
New Tools for Sparse Inference in Large-scale Multiple Comparisons
大规模多重比较中稀疏推理的新工具
  • 批准号:
    0505423
  • 财政年份:
    2005
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Standard Grant

相似海外基金

Statistical Inferences under Monotonic Hazard Trend in Survival Analysis
生存分析中单调危险趋势下的统计推断
  • 批准号:
    2311292
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Continuing Grant
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
Population genomic inferences of history and selection across populations and time
跨群体和时间的历史和选择的群体基因组推断
  • 批准号:
    10623079
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
"She must not know much about that": Children's inferences based on others' listener design
“她一定对此了解不多”:孩子们根据别人的听众设计做出的推断
  • 批准号:
    2317559
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Standard Grant
Improving inferences on health effects of chemical exposures
改进对化学品暴露对健康影响的推断
  • 批准号:
    10753010
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
Generative adversarial networks for demographic inferences of nonmodel species from genomic data
根据基因组数据对非模型物种进行人口统计推断的生成对抗网络
  • 批准号:
    NE/X009637/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Research Grant
Beyond 1D Structure of Earth's Core - Reconciling Inferences from Seismic and Geomagnetic Observations
超越地核的一维结构 - 协调地震和地磁观测的推论
  • 批准号:
    NE/W005247/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Research Grant
Interactions between ES-miRNAs and environmental risk factors are responsible for TNBC progression and associated racial health disparities: a novel analysis with multilevel moderation inferences
ES-miRNA 和环境风险因素之间的相互作用导致 TNBC 进展和相关种族健康差异:一项采用多级调节推论的新颖分析
  • 批准号:
    10594746
  • 财政年份:
    2023
  • 资助金额:
    $ 34.22万
  • 项目类别:
Models and Inferences for Heterogeneous Interaction Patterns in Social Networks
社交网络中异构交互模式的模型和推论
  • 批准号:
    2210735
  • 财政年份:
    2022
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Standard Grant
Distance-based robust inferences and model selection for semiparametric models
半参数模型的基于距离的鲁棒推理和模型选择
  • 批准号:
    RGPIN-2018-04328
  • 财政年份:
    2022
  • 资助金额:
    $ 34.22万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了