Algebraic hierarchical matrix preconditioners for two- and three-dimensional saddle point problems

用于二维和三维鞍点问题的代数分层矩阵预处理器

基本信息

  • 批准号:
    0913017
  • 负责人:
  • 金额:
    $ 13.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-07-01 至 2013-09-30
  • 项目状态:
    已结题

项目摘要

This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).This project deals with the development, analysis and implementationof novel techniques for the solution of large, sparse linear systemsof equations of saddle point type. Despite much recent progress,the solution of large systems of equations remains one of the mainbottlenecks in many numerical simulations. Applications includefluid dynamics, magnetohydrodynamics, image processing, and many more.This project deals with the further development of the technique of hierarchical (H-)matrices. H-matrices provide an efficient technique for computationsinvolving approximations to fully populated matrices.The standard construction of an H-matrix is basedon the underlying geometry of the application. Similar to the generalizationof geometric to algebraic multigrid methods, the PI proposes to develop an algorithm for the algebraic construction of H-matrix preconditioners for saddle point problems. Sequences of three-dimensional Oseen problems that result in the numerical solution of the Navier-Stokes equations will serve as the major application of the novel techniques.An additional topic to be considered in this project isthe application of H-techniques in only recently developedKronecker product preconditioners. The techniques of this proposal have a high potential to lead to robust and scalable blackbox solvers for large, linear systems arising in the simulation of scientific and technical problems of increasing size and complexity.H-matrices have first been introduced in 1998 and since then entered into a wide range of applications.The approach of H-matrices is of significant importance within its own field of numerical analysis and also with respect topractical large-scale computing challenges that scientists are currently facing. Examples for applications include models for magnetic fusion, accelerator design, electrochemical processes or the growth of ceramic nanostructures.Progress in the areas targeted in this proposal will have a positive impact on science and engineering by allowing for fasterand more accurate computer simulations.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。该项目涉及解决大型稀疏线性方程组鞍点型的新技术的开发,分析和实施。尽管最近取得了很大的进展,大型方程组的解决方案仍然是许多数值模拟的主要瓶颈之一。应用包括流体动力学,磁流体动力学,图像处理,以及更多。这个项目涉及层次(H-)矩阵技术的进一步发展。H-矩阵提供了一种有效的计算技术,它涉及到对完全填充矩阵的近似。类似的generalizationof几何代数多重网格方法,PI提出开发一个算法的代数构造的H-矩阵预处理鞍点问题。一系列三维Oseen问题的数值解的Navier-Stokes方程将作为新技术的主要应用,在这个项目中要考虑的另一个主题是H-技术在最近开发的Kronecker乘积预处理器中的应用。该提议的技术具有很高的潜力,H-矩阵是在科学和技术问题的规模和复杂性不断增加的模拟中出现的线性系统。H-矩阵于1998年首次引入,并从那时起进入了广泛的应用。H-矩阵的方法矩阵在其自身的数值分析领域以及科学家目前面临的实际大规模计算挑战方面具有重要意义。应用的例子包括磁聚变模型、加速器设计、电化学过程或陶瓷纳米结构的生长。该提案所针对的领域的进展将对科学和工程产生积极影响,因为它允许更快和更准确的计算机模拟。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allan Mills其他文献

Management and adherence to VTE treatment guidelines in a national prospective cohort study in the Canadian outpatient setting
加拿大门诊国家前瞻性队列研究中 VTE 治疗指南的管理和遵守情况
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    S. Kahn;V. Springmann;S. Schulman;J. Martineau;J. Stewart;Nelly Komari;A. McLeod;C. Strulovitch;M. Blostein;Jacques;G. Gamble;W. Gordon;P. Kagoma;M. Miron;D. Laverdière;M. Game;Allan Mills
  • 通讯作者:
    Allan Mills
Correction to: Sterility testing using a closed system transfer device in oncology medication compounding: a novel method for testing partially used vials
  • DOI:
    10.1007/s40267-021-00837-y
  • 发表时间:
    2021-05-03
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Allan Mills;Mary Yousef
  • 通讯作者:
    Mary Yousef
Characterization of interactions for BtuB, Colicin E3, and HslT
  • DOI:
    10.14288/1.0319168
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allan Mills
  • 通讯作者:
    Allan Mills
Lipopolysaccharides promote binding and unfolding of the antibacterial colicin E3 rRNAse domain.
脂多糖促进抗菌大肠杆菌素 E3 rRNAse 结构域的结合和解折叠。
Sterility testing using a closed system transfer device in oncology medication compounding: a novel method for testing partially used vials
  • DOI:
    10.1007/s40267-021-00823-4
  • 发表时间:
    2021-03-19
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Allan Mills;Mary Yousef
  • 通讯作者:
    Mary Yousef

Allan Mills的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allan Mills', 18)}}的其他基金

Math Success for STEM Majors (MSSM)
STEM 专业数学成功 (MSSM)
  • 批准号:
    0969618
  • 财政年份:
    2010
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Continuing Grant

相似国自然基金

丙烷脱氢Pt@hierarchical zeolite催化剂的设计制备与反应调控
  • 批准号:
    22178062
  • 批准年份:
    2021
  • 资助金额:
    60 万元
  • 项目类别:
    面上项目
分级超级碳纳米管及分级轻质结构的性能研究
  • 批准号:
    10972111
  • 批准年份:
    2009
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
天然生物材料的多尺度力学与仿生研究
  • 批准号:
    10732050
  • 批准年份:
    2007
  • 资助金额:
    200.0 万元
  • 项目类别:
    重点项目

相似海外基金

Manipulation of Host Tissue to Induce a Hierarchical Microvasculature
操纵宿主组织以诱导分层微脉管系统
  • 批准号:
    10637683
  • 财政年份:
    2023
  • 资助金额:
    $ 13.71万
  • 项目类别:
Diversity Supplement: Manipulation of Host Tissue to Induce a Hierarchical Microvasculature
多样性补充:操纵宿主组织以诱导分层微血管系统
  • 批准号:
    10851311
  • 财政年份:
    2023
  • 资助金额:
    $ 13.71万
  • 项目类别:
Regulatory Mechanisms of Collagen XII in Establishing Achilles Tendon Hierarchical Structure and Function in Postnatal Development and Healing
XII 胶原蛋白在建立跟腱层次结构和产后发育和愈合中功能的调节机制
  • 批准号:
    10750621
  • 财政年份:
    2023
  • 资助金额:
    $ 13.71万
  • 项目类别:
Fast and Reliable Hierarchical Structured Methods for More General Matrix Computations
用于更一般矩阵计算的快速可靠的分层结构化方法
  • 批准号:
    1819166
  • 财政年份:
    2018
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
Study on the control scheme of the modular matrix converter with a hierarchical control system
分级控制系统的模块化矩阵变换器控制方案研究
  • 批准号:
    15K05939
  • 财政年份:
    2015
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hierarchical Composite Constructs as Tissue Engineering Scaffolds
作为组织工程支架的分层复合结构
  • 批准号:
    8878442
  • 财政年份:
    2015
  • 资助金额:
    $ 13.71万
  • 项目类别:
Biomimetic Growth of Enamel-like Hierarchical Structures
牙釉质层次结构的仿生生长
  • 批准号:
    8702502
  • 财政年份:
    2014
  • 资助金额:
    $ 13.71万
  • 项目类别:
A study on the methodology of urban environmental planning based on hierarchical matrix structure
基于层次矩阵结构的城市环境规划方法论研究
  • 批准号:
    26889033
  • 财政年份:
    2014
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Biomimetic Growth of Enamel-like Hierarchical Structures
牙釉质层次结构的仿生生长
  • 批准号:
    8891403
  • 财政年份:
    2014
  • 资助金额:
    $ 13.71万
  • 项目类别:
EAGER: Hierarchical Topic Modeling by Nonnegative Matrix Factorization for Interactive Multi-scale Analysis of Text Data
EAGER:通过非负矩阵分解进行分层主题建模,用于文本数据的交互式多尺度分析
  • 批准号:
    1348152
  • 财政年份:
    2013
  • 资助金额:
    $ 13.71万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了