Fast and Reliable Hierarchical Structured Methods for More General Matrix Computations

用于更一般矩阵计算的快速可靠的分层结构化方法

基本信息

  • 批准号:
    1819166
  • 负责人:
  • 金额:
    $ 19.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-08-01 至 2021-07-31
  • 项目状态:
    已结题

项目摘要

Large matrix computations play a critical role in modern scientific computing tasks and engineering simulations. Realistic computations usually involve enormous amounts of data due to large dense matrices or dense intermediate matrix blocks, which makes classical matrix methods impractical. Hierarchical structured methods provide an effective and reliable way to compress and process large matrix data. In such methods, dense matrix blocks are approximated by compact structured forms that are convenient to handle. This research project aims to develop theoretical foundations for understanding multiple hierarchical structured techniques and for designing new hierarchical structured algorithms. These algorithms are expected to be applicable to more general matrix computations and challenging applications where usual structured methods are not suitable or effective.Hierarchical structured methods exploit inherent structures in matrix computations to gain high efficiency while ensuring superior stability. This project is concerned with the design, analysis, and application of fast and reliable hierarchical structured methods for broad classes of challenging computations. A unified framework will be provided to understand multiple types of hierarchical structured methods, design new hierarchical methods with enhanced applicability, and analyze their accuracy and stability. State-of-the-art fast and stable solvers will be developed for tackling challenges such as large data sizes, ill conditioning, high frequencies, and multiple frequencies. The new solvers will be applicable to a wide range of matrix computations. Based on data sparsity and enhanced stability, the solvers will significantly improve the efficiency and reliability of many computations in PDE solution, large data analysis, network, machine learning, imaging, seismic modeling, electromagnetics, etc. The research will also make fast and stable structured solvers widely accessible to broader fields and industries. The data will be included in data repositories for unrestricted access. Open-source packages and educational/tutorial materials will be freely available. The multidisciplinary project will provide excellent opportunities for graduate and undergraduate students from diverse backgrounds to closely interact and to learn critical computational and mathematical skills from multiple fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大矩阵计算在现代科学计算任务和工程仿真中起着至关重要的作用。现实计算中,由于存在较大的密集矩阵或密集的中间矩阵块,通常会涉及到大量的数据,这使得经典的矩阵方法变得不切实际。分层结构化方法为压缩和处理大型矩阵数据提供了一种有效、可靠的方法。在这种方法中,密集矩阵块由易于处理的紧凑结构形式近似。本研究项目旨在为理解多层分层结构技术和设计新的分层结构算法奠定理论基础。这些算法有望适用于更一般的矩阵计算和具有挑战性的应用,通常的结构化方法不适合或有效。层次结构方法利用矩阵计算的固有结构,在保证良好稳定性的同时获得高效率。该项目关注的是设计、分析和应用快速可靠的分层结构方法,用于各种具有挑战性的计算。将提供一个统一的框架来理解多种类型的分层结构方法,设计新的具有增强适用性的分层方法,并分析其准确性和稳定性。将开发最先进的快速和稳定的求解器,以应对诸如大数据规模、病态、高频和多频率等挑战。新的求解器将适用于广泛的矩阵计算。基于数据的稀疏性和增强的稳定性,求解器将显著提高PDE求解、大数据分析、网络、机器学习、成像、地震建模、电磁学等领域许多计算的效率和可靠性。这项研究还将使快速稳定的结构化求解器广泛应用于更广泛的领域和行业。数据将包含在数据存储库中,以便不受限制地访问。开源软件包和教育/教程材料将免费提供。这个多学科项目将为来自不同背景的研究生和本科生提供绝佳的机会,让他们密切互动,学习多个领域的关键计算和数学技能。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-Layer Hierarchical Structures
多层层次结构
Fast Factorization Update for General Elliptic Equations Under Multiple Coefficient Updates
多系数更新下一般椭圆方程的快速因式分解更新
  • DOI:
    10.1137/18m1224623
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Liu, Xiao;Xia, Jianlin;de Hoop, Maarten
  • 通讯作者:
    de Hoop, Maarten
A stable matrix version of the fast multipole method: stabilization strategies and examples
Analytical Low-Rank Compression via Proxy Point Selection
  • DOI:
    10.1137/19m1247838
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xin Ye;J. Xia;Lexing Ying
  • 通讯作者:
    Xin Ye;J. Xia;Lexing Ying
Effectiveness and robustness revisited for a preconditioning technique based on structured incomplete factorization
  • DOI:
    10.1002/nla.2294
  • 发表时间:
    2020-03
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Zi-Xing Xing-Zi-Xing-Xing-2250347;J. Xia;S. Cauley;V. Balakrishnan
  • 通讯作者:
    Zi-Xing Xing-Zi-Xing-Xing-2250347;J. Xia;S. Cauley;V. Balakrishnan
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jianlin Xia其他文献

Single-shot dark-field imaging
单次暗场成像
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Zhili Wang;Dalin Liu;Kun Ren;Xiaomin Shi;Jianlin Xia
  • 通讯作者:
    Jianlin Xia
Effective matrix-free preconditioning for the augmented immersed interface method
熔盐在螺旋槽管内的转变和湍流对流换热
  • DOI:
    10.1016/j.expthermflusci.2013.01.014
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Jianlin Xia;Zhilin Li;Xin Ye
  • 通讯作者:
    Xin Ye
A Robust Randomized Indicator Method for Accurate Symmetric Eigenvalue Detection
  • DOI:
    10.1007/s10915-024-02599-x
  • 发表时间:
    2024-06-28
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Zhongyuan Chen;Jiguang Sun;Jianlin Xia
  • 通讯作者:
    Jianlin Xia
Low-Rank Update Eigensolver for Supercell Band Structure Calculations
  • DOI:
    10.1023/a:1020724313574
  • 发表时间:
    2002-10-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Ming Gu;Beresford Parlett;David Z.-Y. Ting;Jianlin Xia
  • 通讯作者:
    Jianlin Xia

Jianlin Xia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jianlin Xia', 18)}}的其他基金

Integration of Randomized Methods and Fast and Reliable Matrix Computations
随机方法与快速可靠的矩阵计算的集成
  • 批准号:
    2111007
  • 财政年份:
    2021
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Conference on Fast Direct Solvers
快速直接求解器会议
  • 批准号:
    1901567
  • 财政年份:
    2018
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
CAREER: Structured Matrix Computations: Foundations, Methods, and Applications
职业:结构化矩阵计算:基础、方法和应用
  • 批准号:
    1255416
  • 财政年份:
    2013
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant
Efficient Sructured Direct Solvers and Robust Structured Preconditioners for Large Linear Systems and Their Applications
大型线性系统的高效结构化直接求解器和鲁棒结构化预处理器及其应用
  • 批准号:
    1115572
  • 财政年份:
    2011
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Continuing Grant

相似海外基金

CRII: RI: Deep neural network pruning for fast and reliable visual detection in self-driving vehicles
CRII:RI:深度神经网络修剪,用于自动驾驶车辆中快速可靠的视觉检测
  • 批准号:
    2412285
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
Enabling Reliable Testing Of SMLM Datasets
实现 SMLM 数据集的可靠测试
  • 批准号:
    BB/X01858X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Research Grant
STTR Phase I: A Reliable and Efficient New Method for Satellite Attitude Control
STTR第一阶段:可靠、高效的卫星姿态控制新方法
  • 批准号:
    2310323
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
CAREER: Graded and Reliable Aerosol Deposition for Electronics (GRADE): Understanding Multi-Material Aerosol Jet Printing with In-Line Mixing
职业:电子产品的分级且可靠的气溶胶沉积 (GRADE):了解通过在线混合进行多材料气溶胶喷射打印
  • 批准号:
    2336356
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Standard Grant
RITA: Reliable and Efficient Task Management in Edge Computing for AIoT Systems
RITA:AIoT 系统边缘计算中可靠、高效的任务管理
  • 批准号:
    EP/Y015886/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Fellowship
A Novel Contour-based Machine Learning Tool for Reliable Brain Tumour Resection (ContourBrain)
一种基于轮廓的新型机器学习工具,用于可靠的脑肿瘤切除(ContourBrain)
  • 批准号:
    EP/Y021614/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Research Grant
Economic & Reliable DC Microgrids
经济的
  • 批准号:
    EP/Y034619/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Fellowship
Towards an Explainable, Efficient, and Reliable Federated Learning Framework: A Solution for Data Heterogeneity
迈向可解释、高效、可靠的联邦学习框架:数据异构性的解决方案
  • 批准号:
    24K20848
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
SPARQ(s) - Scalable, Precise, And Reliable positioning of color centers for Quantum computing and simulation
SPARQ(s) - 用于量子计算和模拟的可扩展、精确且可靠的色心定位
  • 批准号:
    10078083
  • 财政年份:
    2024
  • 资助金额:
    $ 19.91万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了