Development of a Bayesian estimator for non-stationary Markov transition probabilities and its application to EU farm structural change
非平稳马尔可夫转移概率的贝叶斯估计量的开发及其在欧盟农场结构变化中的应用
基本信息
- 批准号:193147094
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2011
- 资助国家:德国
- 起止时间:2010-12-31 至 2013-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The agricultural sector has experienced substantial structural changes in the past and faces continuing adjustments in the future. The implications of structural change are not only relevant for the sector itself but have broader social, economic and environmental consequences for a region. An understanding of this process is required in order to assess how (agricultural-) policy affects or, if a specific social outcome is desired, can influence this development. A common approach to gain understanding of the process is to model structural change as a Markov process. One problem in the analysis of structural change in the EU is that farm level (micro) data is rarely available such that inference about behaviour of individual farms has to be derived from aggregated (macro) data. Recently, the generalized cross entropy estimator gained popularity in this context since it allows considering prior information such that the often underdetermined “macro data” Markov models can be estimated. However, the way prior information is considered is also the greatest drawback of the approach. Therefore, the project aims to develop a Bayesian framework as an alternative estimator that allows to consider prior information in a more efficient and transparent way. The project will further provide an evaluation of the statistical properties of the estimator as well as an exemplifying application analyzing the effects of single farm payments on agricultural structural change in the EU.
农业部门过去经历了重大的结构性变化,未来将面临持续的调整。结构变化的影响不仅与该部门本身有关,而且对一个区域具有更广泛的社会、经济和环境后果。必须了解这一进程,以便评估(农业)政策如何影响这一发展,或者如果希望取得特定的社会结果,如何影响这一发展。理解这一过程的一种常用方法是将结构变化建模为马尔可夫过程。欧盟结构变化分析中的一个问题是,农场层面(微观)数据很少可用,因此对单个农场行为的推断必须从总体(宏观)数据中得出。最近,广义交叉熵估计器在这方面得到了普及,因为它允许考虑先验信息,从而可以估计经常不确定的“宏观数据”马尔可夫模型。然而,考虑先验信息的方式也是该方法最大的缺点。因此,该项目旨在开发一个贝叶斯框架作为替代估计器,允许以更有效和透明的方式考虑先验信息。该项目将进一步对估算器的统计特性进行评估,并举例分析单一农场支付对欧盟农业结构变化的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Thomas Heckelei其他文献
Professor Dr. Thomas Heckelei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Thomas Heckelei', 18)}}的其他基金
Resilience of SES from a Resource-Economics Perspective
从资源经济学角度看社会经济地位的弹性
- 批准号:
168576731 - 财政年份:2010
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
多元纵向数据与复发事件和终止事件的Bayesian联合模型研究
- 批准号:82173628
- 批准年份:2021
- 资助金额:52 万元
- 项目类别:面上项目
三维地质模型约束下地球化学场的Bayesian-MCMC推断
- 批准号:42072326
- 批准年份:2020
- 资助金额:63 万元
- 项目类别:面上项目
基于Bayesian Kriging模型的压射机构稳健优化设计基础研究
- 批准号:51875209
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
X射线图像分析中的MCMC-Bayesian理论与计算方法研究
- 批准号:U1830105
- 批准年份:2018
- 资助金额:62.0 万元
- 项目类别:联合基金项目
基于Bayesian位移场的SAR图像精确配准方法研究
- 批准号:41601345
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多结局Bayesian联合生存模型及糖尿病并发症预测研究
- 批准号:81673274
- 批准年份:2016
- 资助金额:50.0 万元
- 项目类别:面上项目
基于Meta流行病学和Bayesian方法构建针刺干预无偏倚风险效果评价体系研究
- 批准号:81403276
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
BtoC电子商务中基于分层Bayesian网络的信任与声誉计算理论研究
- 批准号:71302080
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Bayesian网络的坚硬顶板条件下煤与瓦斯突出预警控制机理研究
- 批准号:51274089
- 批准年份:2012
- 资助金额:80.0 万元
- 项目类别:面上项目
Bayesian实物期权及在信用风险决策中的应用
- 批准号:71071027
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341238 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Bayesian Learning with Model Misspecification
模型错误指定的贝叶斯学习
- 批准号:
23K20143 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
- 批准号:
2242590 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: NSFGEO-NERC: Advancing capabilities to model ultra-low velocity zone properties through full waveform Bayesian inversion and geodynamic modeling
合作研究:NSFGEO-NERC:通过全波形贝叶斯反演和地球动力学建模提高超低速带特性建模能力
- 批准号:
2341237 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Bayesian causal estimation via model misspecification
通过模型错误指定进行贝叶斯因果估计
- 批准号:
EP/Y029755/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
AF:Small: Bayesian Estimation and Constraint Satisfaction
AF:Small:贝叶斯估计和约束满足
- 批准号:
2342192 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Bayesian Learning for Spatial Point Processes: Theory, Methods, Computation, and Applications
空间点过程的贝叶斯学习:理论、方法、计算和应用
- 批准号:
2412923 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
ATD: Activity Aware Bayesian Deep Learning
ATD:活动感知贝叶斯深度学习
- 批准号:
2319470 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Advancing Efficient Global Optimization of Extremely Expensive Functions under Uncertainty using Structure-Exploiting Bayesian Methods
职业:使用结构利用贝叶斯方法在不确定性下推进极其昂贵的函数的高效全局优化
- 批准号:
2237616 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant