Bayesian causal estimation via model misspecification
通过模型错误指定进行贝叶斯因果估计
基本信息
- 批准号:EP/Y029755/1
- 负责人:
- 金额:$ 7.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With an increasing amount of observational data becoming available, there is a pressing need to use appropriate statistical models to answer meaningful causal questions. Causal inference is widely studied across all sciences, such as public transportation and epidemiology. The inference target is a causal estimand which measures the change in the expected outcome of unit under study of different interventions. It has a well-established basis in frequentist semi-parametric theory, with estimation of causal parameters typically conducted via outcome regression and propensity score adjustment. A Bayesian counterpart, however, is not obvious as doubly robust estimation involves a semi-parametric formulation in the absence of a fully specified likelihood function. In this project, we aim to investigate solutions for Bayesian causal inference from standard prior-to-posterior updating, without requiring a parametric family for the observations, and also robust to model misspecfication. We will apply the propose methods to evaluate and quantify London's Stop & Search causal effects on deterring drug offenses in previous decade.
随着越来越多的观测数据变得可用,迫切需要使用适当的统计模型来回答有意义的因果问题。因果推理在所有科学中都得到了广泛的研究,例如公共交通和流行病学。推理目标是一个因果被估量,它衡量不同干预措施下研究单元的预期结果的变化。它在频率主义半参数理论中有着良好的基础,通常通过结果回归和倾向评分调整来估计因果参数。贝叶斯对应,但是,是不明显的双重稳健估计涉及一个半参数的制定在没有一个完全指定的似然函数。在这个项目中,我们的目标是研究解决方案贝叶斯因果推理从标准的先验到后验更新,而不需要一个参数家庭的意见,也鲁棒模型误指定。我们将应用所提出的方法来评估和量化伦敦的停止和搜索在过去十年中威慑毒品犯罪的因果关系的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yu Luo其他文献
MiR-29b-3p aggravates NG108-15 cell apoptosis triggered by fluorine combined with aluminum
MiR-29b-3p加剧氟与铝结合引发的NG108-15细胞凋亡
- DOI:
10.1016/j.ecoenv.2021.112658 - 发表时间:
2021 - 期刊:
- 影响因子:6.8
- 作者:
Zhongbi Peng;Xuemei Yang;Hua Zhang;Mingyue Yin;Yu Luo;Chun Xie - 通讯作者:
Chun Xie
Robust MPC for disturbed nonlinear discrete-time systems via a composite self-triggered scheme
通过复合自触发方案实现受扰非线性离散时间系统的鲁棒 MPC
- DOI:
10.1016/j.automatica.2021.109499 - 发表时间:
2021 - 期刊:
- 影响因子:6.4
- 作者:
Huahui Xie;Li Dai;Yu Luo;Yuanqing Xia - 通讯作者:
Yuanqing Xia
Statistical regularities guide the spatial scale of attention
统计规律指导注意力的空间尺度
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Jiaying Zhao;Yu Luo - 通讯作者:
Yu Luo
Loss of microbial diversity does not decrease γ-HCH degradation but increases methanogenesis in flooded paddy soil
微生物多样性的丧失不会减少γ-六氯环己烷的降解,但会增加淹水稻田中的产甲烷作用
- DOI:
10.1016/j.soilbio.2021.108210 - 发表时间:
2021-05 - 期刊:
- 影响因子:9.7
- 作者:
Xueling Yang;Jing Yuan;Ningning Li;Ashley Edwin Franks;Jue Shentu;Yu Luo;Jianming Xu;Yan He - 通讯作者:
Yan He
Effects of Galaxy Intrinsic Alignment on Weak Lensing Peak Statistics
星系本征排列对弱透镜峰值统计的影响
- DOI:
10.3847/1538-4357/ac9a4c - 发表时间:
2022-10 - 期刊:
- 影响因子:0
- 作者:
Tianyu Zhang;Xiangkun Liu;Chengliang Wei;Guoliang Li;Yu Luo;Xi Kang;Zuhui Fan - 通讯作者:
Zuhui Fan
Yu Luo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yu Luo', 18)}}的其他基金
CNS: CORE: Small: Collaborative Research: Towards Sustainable, Efficient and Secure IoT
CNS:核心:小型:协作研究:迈向可持续、高效和安全的物联网
- 批准号:
2122167 - 财政年份:2021
- 资助金额:
$ 7.88万 - 项目类别:
Standard Grant
相似国自然基金
使用倾向分(Propensity Score)和主分层(Principal Stratification)进行因果推断
- 批准号:10401003
- 批准年份:2004
- 资助金额:11.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Statistical Methods for Data Integration and Applications to Genome-wide Association Studies
数据集成的统计方法及其在全基因组关联研究中的应用
- 批准号:
10889298 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Statistical methods to characterize causal mechanisms by which air pollution affects the recurrence of cardiovascular events
描述空气污染影响心血管事件复发因果机制的统计方法
- 批准号:
10660281 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Applying causal inference methods to improve estimation of the real-world benefits and harms of lung cancer screening
应用因果推理方法来改进对肺癌筛查的现实益处和危害的估计
- 批准号:
10737187 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Estimation of causal effects in clinical trials with multiple endpoints
多终点临床试验中因果效应的估计
- 批准号:
23K11012 - 财政年份:2023
- 资助金额:
$ 7.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Leveraging Background Knowledge for Identification and Estimation of Causal Effects in the Presence of Latent Variables
利用背景知识识别和估计存在潜在变量的因果效应
- 批准号:
2210210 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Continuing Grant
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
The impact of clinical interventions for sepsis in routine care and among detailed patient subgroups: A novel approach for causal effect estimation in electronic health record data
脓毒症临床干预措施对常规护理和详细患者亚组的影响:电子健康记录数据因果效应估计的新方法
- 批准号:
10686093 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Bayesian machine learning for causal inference with incomplete longitudinal covariates and censored survival outcomes
用于不完整纵向协变量和审查生存结果的因果推理的贝叶斯机器学习
- 批准号:
10620291 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Prize 202203PJT - The test-negative design for the estimation of COVID-19 vaccine effectiveness: design evaluation and development of statistical methods in the evolving context
奖 202203PJT - 用于估计 COVID-19 疫苗有效性的测试阴性设计:不断发展的背景下统计方法的设计评估和开发
- 批准号:
467985 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Operating Grants
Identification, estimation and inference of nonlinear dynamic causal effects in macroeconometrics
宏观计量经济学中非线性动态因果效应的识别、估计和推断
- 批准号:
RGPIN-2021-02663 - 财政年份:2022
- 资助金额:
$ 7.88万 - 项目类别:
Discovery Grants Program - Individual