Stable and efficient computation of the CS decomposition
CS分解的稳定且高效的计算
基本信息
- 批准号:0914559
- 负责人:
- 金额:$ 10.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The CS decomposition is a matrix decomposition related to the eigenvalue and singular value decompositions. It applies to any unitary matrix partitioned into a 2-by-2 block structure, and the effect is to simultaneously diagonalize all four blocks. By orthogonality, the entries of the resulting diagonal blocks must be the cosines and sines of some angles, leading Stewart to coin the term CS (cosine-sine) decomposition for his 1977 discovery. The decomposition can reveal the canonical angles between linear subspaces, studied as early as 1875 by Jordan, and the canonical correlations between two sets of observed variables, introduced by Hotelling in 1936. The current proposal focuses on computational aspects of this matrix decomposition. The first goal is the stable computation of the full form of the decomposition, as originally formulated by Stewart. As described above, this may be called a 2-by-2 CSD. Prior methods compute a reduced form, the 2-by-1 CSD, which in a sense is half of the full 2-by-2 form. Attempts at extending existing methods for the 2-by-1 CSD to the full 2-by-2 CSD have not been successful. A proof of stability for a recent algorithm described by the investigator, designed from the ground up to compute the full 2-by-2 CSD, is sought. Another goal of the project is to analyze the stability and efficiency of the algorithm when specialized to the 2-by-1 CSD and the GSVD, comparing with existing methods. A third goal is the investigation of an alternative algorithm based on a divide-and-conquer scheme, in addition to the QR iteration-approach of the investigator's first algorithm. Finally, possible applications enabled by the stable computation of the 2-by-2 CSD will be explored.A matrix decomposition is a mathematical tool for breaking a matrix, a rectangular array of numbers, into a product of simpler matrices. These simpler matrices often reveal important structure. The eigenvalue matrix decomposition can distinguish between stability and instability in engineering applications and can reveal the prominence of web pages when performing Internet searches. The singular value matrix decomposition can infer the roles of genes from indirect observations and provides a key component in facial recognition. The subject of this project is another matrix decomposition, the CS (cosine-sine) decomposition. This decomposition can be used to compare and contrast underlying factors present in two data sets. An example is provided by Hotelling, who proposes the analysis of heritable traits by comparing and contrasting mother rat and daughter rat. The computation of the CS decomposition has proved more difficult than that of the eigenvalue and singular value decompositions. This project seeks to improve the accuracy and speed of computation. In addition, this project will consider a more general form of the CS decomposition than earlier studies, opening the possibility of new applications.
该奖项由2009年《美国复苏和再投资法案》(公法111-5)资助。CS分解是与特征值和奇异值分解相关的矩阵分解。它适用于任何分割成2乘2块结构的酉矩阵,其效果是同时对角化所有四个块。根据正交性,得到的对角线块的条目必须是某些角度的余弦和正弦,这导致斯图尔特在1977年的发现中创造了术语CS(余弦-正弦)分解。这种分解可以揭示早在1875年由Jordan研究的线性子空间之间的正则角,以及由Hotling在1936年引入的两组观测变量之间的正则相关性。目前的建议侧重于这种矩阵分解的计算方面。第一个目标是稳定地计算分解的完整形式,就像斯图尔特最初提出的那样。如上所述,这可以被称为2x2CSD。现有方法计算简化形式2×1 CSD,其在某种意义上是完整的2×2形式的一半。试图将2x1 CSD的现有方法扩展到完整的2x2 CSD,但没有成功。研究人员最近描述的一种算法的稳定性被寻求证明,该算法是从头开始设计的,用于计算完整的2乘2 CSD。该项目的另一个目标是分析算法在专门针对2×1 CSD和GSVD时的稳定性和效率,并与现有方法进行比较。第三个目标是研究基于分而治之方案的替代算法,除了调查者第一个算法的QR迭代方法。最后,我们将探讨2×2 CSD的稳定计算可能带来的应用。矩阵分解是一种数学工具,用于将矩阵(一个矩形数字阵列)分解为更简单的矩阵的乘积。这些更简单的矩阵通常揭示出重要的结构。特征值矩阵分解可以区分工程应用中的稳定性和不稳定性,并可以在进行互联网搜索时揭示网页的突出程度。奇异值矩阵分解可以从间接观测中推断基因的作用,是人脸识别中的关键组成部分。这个项目的主题是另一种矩阵分解,CS(余弦-正弦)分解。这种分解可用于比较和对比两个数据集中存在的潜在因素。霍特林提供了一个例子,他提出了通过比较母鼠和子鼠来分析可遗传特征的方法。已证明CS分解的计算比特征值和奇异值分解的计算更困难。该项目旨在提高计算的精度和速度。此外,本项目将考虑CS分解的一种比以前研究更一般的形式,从而打开了新应用的可能性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Sutton其他文献
Cultural Mistrust and Counseling: A Review of Factors Impacting African Americans Males
文化不信任与咨询:影响非裔美国男性的因素回顾
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Nathalie D. Mizelle;James L. Maiden;Jody C. Grandy;Delarious O. Stewart;Brian Sutton - 通讯作者:
Brian Sutton
Exercise With Unstable Objects: A Descriptive Survey Among Health Care and Fitness Professionals
使用不稳定物体进行锻炼:对医疗保健和健身专业人员的描述性调查
- DOI:
10.1123/ijatt.2023-0128 - 发表时间:
2024 - 期刊:
- 影响因子:0.4
- 作者:
Scott W. Cheatham;Russell T. Baker;Wendy N. Batts;Tony Ambler;Brian Sutton - 通讯作者:
Brian Sutton
Associations Between School-Based Substance Use Treatment and Academic Outcomes.
学校药物使用治疗与学业成绩之间的关联。
- DOI:
10.1089/cap.2018.0178 - 发表时间:
2019 - 期刊:
- 影响因子:1.9
- 作者:
M. J. Lintz;Brian Sutton;C. Thurstone - 通讯作者:
C. Thurstone
Survey methodology for studying substance use prevention programs in schools
研究学校物质使用预防计划的调查方法
- DOI:
10.1142/9781860949531_0013 - 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
Shelton M. Jones;Brian Sutton;K. Boyle - 通讯作者:
K. Boyle
Piaget on play: a critique.
伯爵论游戏:批评。
- DOI:
10.1037/h0022601 - 发表时间:
1966 - 期刊:
- 影响因子:0
- 作者:
Brian Sutton - 通讯作者:
Brian Sutton
Brian Sutton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Sutton', 18)}}的其他基金
RUI: Commutativity in Numerical Computation
RUI:数值计算中的交换律
- 批准号:
2012216 - 财政年份:2020
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Structural studies to advance understanding of IgM and its complement and receptor interactions
结构研究促进对 IgM 及其补体和受体相互作用的理解
- 批准号:
BB/K006142/1 - 财政年份:2012
- 资助金额:
$ 10.8万 - 项目类别:
Research Grant
Allergenicity and allergen dominance: structural requirements for IgE-dependent recognition by B cells & effector cells
过敏性和过敏原优势:B 细胞 IgE 依赖性识别的结构要求
- 批准号:
G1100090-E01/1 - 财政年份:2011
- 资助金额:
$ 10.8万 - 项目类别:
Research Grant
Immunoglobulin Y: an IgG-like antibody with an IgE-like structure?
免疫球蛋白 Y:具有 IgE 样结构的 IgG 样抗体?
- 批准号:
BB/D011418/1 - 财政年份:2006
- 资助金额:
$ 10.8万 - 项目类别:
Research Grant
Exploring, Understanding and Intervening in IgE-dependent Mechanisms in Allergic Disease and Asthma
探索、理解和干预过敏性疾病和哮喘的 IgE 依赖性机制
- 批准号:
G0501494/1 - 财政年份:2006
- 资助金额:
$ 10.8万 - 项目类别:
Research Grant
相似国自然基金
固定参数可解算法在平面图问题的应用以及和整数线性规划的关系
- 批准号:60973026
- 批准年份:2009
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Computation-efficient Resolution for Low-Carbon Grids with Renewables and Energy Storage
职业:可再生能源和能源存储低碳电网的计算高效解决方案
- 批准号:
2340095 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Research on Computable Analysis and Verification of Efficient Exact Real Computation
高效精确实数计算的可计算分析与验证研究
- 批准号:
24K20735 - 财政年份:2024
- 资助金额:
$ 10.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Computation-efficient Algorithms for Grid-scale Energy Storage Control, Bidding, and Integration Analysis
职业:用于电网规模储能控制、竞价和集成分析的计算高效算法
- 批准号:
2239046 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Efficient Computation of Generalized Persistence Diagrams
广义持久图的高效计算
- 批准号:
2324632 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Continuing Grant
Efficient Secure Multi-Party Computation Framework for Privacy-Preserving Machine Learning
用于保护隐私的机器学习的高效安全多方计算框架
- 批准号:
22KF0098 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CIF: Small: Generic Building Blocks of Communication-efficient Computation Networks - Fundamental Limits
CIF:小型:通信高效计算网络的通用构建块 - 基本限制
- 批准号:
2221379 - 财政年份:2023
- 资助金额:
$ 10.8万 - 项目类别:
Standard Grant
Efficient algorithms for the symbolic computation of matrices
矩阵符号计算的高效算法
- 批准号:
RGPIN-2020-06746 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Discovery Grants Program - Individual
Investigating bio-inspired architectures for efficient computation
研究仿生架构以实现高效计算
- 批准号:
2894696 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Studentship
Towards Improved Understanding and Efficient Utilization of Depthwise Computation in Modern Neural Networks
提高对现代神经网络深度计算的理解和有效利用
- 批准号:
577088-2022 - 财政年份:2022
- 资助金额:
$ 10.8万 - 项目类别:
Alliance Grants