A Theoretical and Algorithmic Study of the Immersed Boundary Method
浸入边界法的理论与算法研究
基本信息
- 批准号:0914963
- 负责人:
- 金额:$ 31.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-08-01 至 2013-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is awarded using funds made available by the American Recovery and Reinvestment Act of 2009 (Public Law 111-5). The immersed boundary method is a popular numerical scheme to simulate problems problems of fluid-structure interaction. Despite the popularity of the immersed boundary method, its convergence properties are poorly understood. The goal of this proposal is to build a convergence theory of the immersed boundary method and to develop efficient implicit methods to overcome numerical stiffness often encountered in application. A salient feature of the immersed boundary method is the use of regularized Dirac delta functions to handle the presence of sharp interfaces within the computational domain. This idea is now widely used beyond the immersed boundary method in multiphase and complex flow simulations in the context of front-tracking and level-set methods. The theory developed here should also contribute toour understanding of such methods. One of the major difficulties in applications of the immersed boundary method is numerical stiffness, necessitating the practitioner to use very small time steps to avoid numerical instability. Building upon previous work, efficient implicit methods will be developed to overcome this difficulty.Phenomena in which fluid and elastic materials interact abound in nature and engineering. Important examples include blood flow in the heart, swimming and flying of birds and insects, and flows that arise in industrial processes. Computational investigation is very important in understanding such phenomena, and the immersed boundary method is one of the most popular computational methods to simulate such problems. In this project, we seek to develop more accurate and efficient ways to perform immersed boundary computations. One important ingredient for this is to develop a theoretical framework to understand convergence properties of immersed boundary computations. Such a convergence theory should serve as a firm foundation upon which to develop better algorithms to simulate flows with immersed elastic structures.
这项提案是利用2009年《美国复苏和再投资法案》(公法111-5)提供的资金授予的。浸没边界法是模拟流固耦合问题的一种常用的数值方法。尽管浸没边界方法很流行,但人们对它的收敛性质知之甚少。该建议的目的是建立浸没边界法的收敛理论,并发展有效的隐式方法来克服应用中经常遇到的数值刚性。浸没边界方法的一个显著特点是使用正则化的狄拉克增量函数来处理计算区域内尖锐界面的存在。这种思想现在被广泛应用于前沿跟踪和水平集方法背景下的多相和复杂流动模拟中的浸没边界方法。这里发展的理论也应该有助于我们对这种方法的理解。浸没边界法应用的主要困难之一是数值刚度,这就需要实践者使用非常小的时间步长来避免数值不稳定。在前人工作的基础上,将发展有效的隐式方法来克服这一困难。流体和弹性材料相互作用的现象在自然界和工程中都很常见。重要的例子包括心脏中的血液流动,鸟类和昆虫的游泳和飞行,以及工业过程中产生的流动。计算研究对于理解这类现象是非常重要的,浸没边界方法是模拟这类问题的最常用的计算方法之一。在这个项目中,我们寻求开发更准确和更高效的方法来执行浸没边界计算。这其中的一个重要组成部分是开发一个理论框架来理解浸没边界计算的收敛性质。这样的收敛理论应该作为开发更好的算法来模拟浸没弹性结构的流动的坚实基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yoichiro Mori其他文献
BIBLIOGRAPHY OF ROBERT M. STRAIN
罗伯特·M·斯特兰的参考书目
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
F. Gancedo;Eduardo García;Neel Patel;Robert Strain;Po‑Chun Kuo;Yoichiro Mori - 通讯作者:
Yoichiro Mori
Mathematical Modeling of Cell Volume Control
- DOI:
10.1016/j.bpj.2019.11.2567 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Maria Jesus Munoz Lopez;Yoichiro Mori - 通讯作者:
Yoichiro Mori
Well‐Posedness and Global Behavior of the Peskin Problem of an Immersed Elastic Filament in Stokes Flow
斯托克斯流中浸没弹性丝的 Peskin 问题的适定性和全局行为
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:3
- 作者:
Yoichiro Mori;Analise Rodenberg;Daniel Spirn - 通讯作者:
Daniel Spirn
Lp Convergence of the Immersed Boundary Method for Stationary Stokes Problems
稳态Stokes问题浸入边界法的Lp收敛性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:2.9
- 作者:
Yang Liu;Yoichiro Mori - 通讯作者:
Yoichiro Mori
A computational study on the role of glutamate and NMDA receptors on cortical spreading depression using a multidomain electrodiffusion model
使用多域电扩散模型研究谷氨酸和 NMDA 受体对皮质扩散抑制的作用
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Austin Tuttle;Jorge Riera Diaz;Yoichiro Mori - 通讯作者:
Yoichiro Mori
Yoichiro Mori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yoichiro Mori', 18)}}的其他基金
Collaborative Research: Analysis and Computation of Dynamics of Elastic Structures in Stokes Flow
合作研究:斯托克斯流中弹性结构动力学分析与计算
- 批准号:
2042144 - 财政年份:2020
- 资助金额:
$ 31.51万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Computation of Dynamics of Elastic Structures in Stokes Flow
合作研究:斯托克斯流中弹性结构动力学分析与计算
- 批准号:
1907583 - 财政年份:2019
- 资助金额:
$ 31.51万 - 项目类别:
Standard Grant
Collaborative Research: Algorithm and Theory for Interface Computations
协作研究:接口计算的算法和理论
- 批准号:
1620316 - 财政年份:2016
- 资助金额:
$ 31.51万 - 项目类别:
Standard Grant
Collaborative Research: Cortical Spreading Depression and Ionic Electrodiffusion in the Brain
合作研究:大脑皮层扩散抑制和离子电扩散
- 批准号:
1516978 - 财政年份:2015
- 资助金额:
$ 31.51万 - 项目类别:
Standard Grant
相似海外基金
Algorithmic study on intersection graphs
交集图的算法研究
- 批准号:
23K03191 - 财政年份:2023
- 资助金额:
$ 31.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
FW-HTF-RM: Collaborative Research: Understanding the Algorithmic Workplace: A Multi-Method Study for Comprehensive Optimization of Platforms
FW-HTF-RM:协作研究:理解算法工作场所:平台综合优化的多方法研究
- 批准号:
1928453 - 财政年份:2019
- 资助金额:
$ 31.51万 - 项目类别:
Standard Grant
FW-HTF-RM: Collaborative Research: Understanding the Algorithmic Workplace: A Multi-Method Study for Comprehensive Optimization of Platforms
FW-HTF-RM:协作研究:理解算法工作场所:平台综合优化的多方法研究
- 批准号:
1928608 - 财政年份:2019
- 资助金额:
$ 31.51万 - 项目类别:
Standard Grant
Demystifying Algorithmic 'Dystopia', Understanding Artificial Intelligence: An Ethnomethodological Study of Elementary Practices of Reasoning with Alg
揭秘算法“反乌托邦”,理解人工智能:用算法进行推理的基本实践的民族方法学研究
- 批准号:
2273031 - 财政年份:2019
- 资助金额:
$ 31.51万 - 项目类别:
Studentship
A Study on Performance Guarantee for Algorithmic Processing of Large Scale Data
大规模数据算法处理的性能保证研究
- 批准号:
17K00013 - 财政年份:2017
- 资助金额:
$ 31.51万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Study of the Impact of Algorithmic Trading on the Valuation of R&D-Intensive Firms
算法交易对 R 估值影响的研究
- 批准号:
17K13833 - 财政年份:2017
- 资助金额:
$ 31.51万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Collaborative Research: PIF: Scalable Quantum Computers in the Presence of Physical Noise: a Study of Surface Codes with Realistic Errors at the Algorithmic Level
合作研究:PIF:存在物理噪声时的可扩展量子计算机:算法层面具有现实错误的表面代码研究
- 批准号:
1660686 - 财政年份:2016
- 资助金额:
$ 31.51万 - 项目类别:
Continuing Grant
Information Extraction from Interconnected Data: An Algorithmic Study
从互连数据中提取信息:算法研究
- 批准号:
283327-2012 - 财政年份:2016
- 资助金额:
$ 31.51万 - 项目类别:
Discovery Grants Program - Individual
Information Extraction from Interconnected Data: An Algorithmic Study
从互连数据中提取信息:算法研究
- 批准号:
283327-2012 - 财政年份:2015
- 资助金额:
$ 31.51万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: PIF: Scalable Quantum Computers in the Presence of Physical Noise: a Study of Surface Codes with Realistic Errors at the Algorithmic Level
合作研究:PIF:存在物理噪声时的可扩展量子计算机:算法层面具有现实错误的表面代码研究
- 批准号:
1415461 - 财政年份:2014
- 资助金额:
$ 31.51万 - 项目类别:
Continuing Grant














{{item.name}}会员




