Collaborative Research: Analysis and Computation of Dynamics of Elastic Structures in Stokes Flow

合作研究:斯托克斯流中弹性结构动力学分析与计算

基本信息

  • 批准号:
    2042144
  • 负责人:
  • 金额:
    $ 27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Problems in which elastic structures interact with a surrounding fluid can be found throughout the natural world and in engineering. Such fluid structure interaction (FSI) problems include the flying of birds, the swimming of fish, and blood flow through the heart and blood vessels. A particularly important class of FSI problems are those at small spatial scales. The biophysics of cell biological processes is a very important example of this. In such FSI problems, the fluid can be treated as a very viscous fluid (Stokes fluid). This project will study FSI problems in a Stokes fluid. The mathematical equations describing FSI problems are generally difficult to study mathematically, but the relative simplicity of the equations of Stokes fluids makes possible a detailed mathematical study of this class of FSI problems. The research program is divided into two parts. In the first, we study the dynamics of membranes in a Stokes fluid. Such models are often used to describe the dynamics of the cell membrane. In the second, we study the dynamics of filaments in Stokes flow. Such models are often used to describe the dynamics of flagella of microorganisms and sperm. A detailed mathematical study of such FSI problems will lead to a better understanding of FSI problems in general and also to the development of efficient computational algorithms in the simulation of such problems. This award will also provide support for the involvement of undergraduate and graduate students in the research.Fluid structure interaction (FSI) problems in which an elastic structure interacts with the surrounding fluid abound in science and engineering and are studied intensively by computational methods by many authors. Despite their importance, the governing partial differential equations and the numerical methods for such problems are not well-understood from an analytical standpoint. In this research, we focus on a set of canonical FSI problems in which the elastic structures interact with a fluid obeying the Stokes equations. The project consists of two parts. In the first, we will study the problem of co-dimension one elastic interfaces immersed in Stokes flow. Building upon previous work by Mori and collaborators on the well-posedness of the 1D elastic structure/2D Stokes flow problem (Peskin problem), we shall extend the well-posedness theory to more general and related problems including the problem of a 2D elastic surface in 3D Stokes flow. We shall also develop a convergence theory for boundary integral methods for such problems and initiate a study to extend these results to the convergence analysis of fluid-grid based methods. The second part concerns slender body theory, which deals with the dynamics of thin filaments in 3D Stokes flow. We have recently succeeded in providing the first mathematical justification of slender body approximation, which we shall leverage to further our analysis and develop new computational methods for slender body computation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在自然界和工程中,弹性结构与周围流体相互作用的问题随处可见。这类流体结构相互作用(FSI)问题包括鸟类的飞行、鱼的游动以及血液在心脏和血管中的流动。一类特别重要的FSI问题是小空间尺度上的问题。细胞生物学过程的生物物理学就是一个非常重要的例子。在这样的FSI问题中,流体可以被视为非常粘性的流体(斯托克斯流体)。本项目将研究Stokes流体中的FSI问题。描述FSI问题的数学方程通常很难数学研究,但Stokes流体方程的相对简单使得对这类FSI问题进行详细的数学研究成为可能。研究计划分为两个部分。首先,我们研究了Stokes流体中膜的动力学。这样的模型经常被用来描述细胞膜的动力学。在第二章中,我们研究了斯托克斯流中细丝的动力学。这样的模型经常被用来描述微生物和精子的鞭毛的动态。对这类FSI问题进行详细的数学研究将有助于更好地理解FSI问题,也有助于开发有效的计算算法来模拟这类问题。该奖项还将为本科生和研究生参与研究提供支持。弹性结构与周围流体相互作用的流体结构相互作用(FSI)问题在科学和工程中广泛存在,许多作者通过计算方法对其进行了深入的研究。尽管它们很重要,但从分析的角度来看,控制偏微分方程组和这类问题的数值方法并没有得到很好的理解。在这项研究中,我们集中于一组正则的FSI问题,其中弹性结构与服从Stokes方程的流体相互作用。该项目由两部分组成。首先,我们将研究处于Stokes流中的一维共维弹性界面问题。在Mori和他的合作者关于一维弹性结构/二维Stokes流问题(Peskin问题)适定性工作的基础上,我们将把适定性理论扩展到更一般的相关问题,包括三维Stokes流中的二维弹性面问题。我们还将发展这类问题的边界积分方法的收敛理论,并开始研究将这些结果扩展到基于流体网格的方法的收敛分析。第二部分是细长体理论,它涉及三维Stokes流中细丝的动力学。我们最近成功地提供了细长身体近似的第一个数学证明,我们将利用它来进一步分析和开发细长身体计算的新计算方法。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Well-posedness and applications of classical elastohydrodynamics for a swimming filament
  • DOI:
    10.1088/1361-6544/acb7c4
  • 发表时间:
    2023-03-01
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Mori,Yoichiro;Ohm,Laurel
  • 通讯作者:
    Ohm,Laurel
Accuracy of slender body theory in approximating force exerted by thin fiber on viscous fluid
细长体理论近似细纤维对粘性流体作用力的准确性
  • DOI:
    10.1111/sapm.12380
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Mori, Yoichiro;Ohm, Laurel
  • 通讯作者:
    Ohm, Laurel
Asymptotic Behavior of Fronts and Pulses of the Bidomain Model
双域模型的前沿和脉冲的渐近行为
  • DOI:
    10.1137/21m1416904
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Matano Hiroshi;Mori Yoichiro;Nara Mitsunori;Sakakibara Koya
  • 通讯作者:
    Sakakibara Koya
A single-layer based numerical method for the slender body boundary value problem
  • DOI:
    10.1016/j.jcp.2021.110865
  • 发表时间:
    2021-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William H. Mitchell;H. Bell;Yoichiro Mori;Laurel Ohm;Daniel Spirn
  • 通讯作者:
    William H. Mitchell;H. Bell;Yoichiro Mori;Laurel Ohm;Daniel Spirn
Evolution of prosocial behaviours in multilayer populations
  • DOI:
    10.1038/s41562-021-01241-2
  • 发表时间:
    2022-01-03
  • 期刊:
  • 影响因子:
    29.9
  • 作者:
    Su, Qi;McAvoy, Alex;Plotkin, Joshua B.
  • 通讯作者:
    Plotkin, Joshua B.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yoichiro Mori其他文献

BIBLIOGRAPHY OF ROBERT M. STRAIN
罗伯特·M·斯特兰的参考书目
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    F. Gancedo;Eduardo García;Neel Patel;Robert Strain;Po‑Chun Kuo;Yoichiro Mori
  • 通讯作者:
    Yoichiro Mori
Mathematical Modeling of Cell Volume Control
  • DOI:
    10.1016/j.bpj.2019.11.2567
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Maria Jesus Munoz Lopez;Yoichiro Mori
  • 通讯作者:
    Yoichiro Mori
Well‐Posedness and Global Behavior of the Peskin Problem of an Immersed Elastic Filament in Stokes Flow
斯托克斯流中浸没弹性丝的 Peskin 问题的适定性和全局行为
Lp Convergence of the Immersed Boundary Method for Stationary Stokes Problems
稳态Stokes问题浸入边界法的Lp收敛性
A computational study on the role of glutamate and NMDA receptors on cortical spreading depression using a multidomain electrodiffusion model
使用多域电扩散模型研究谷氨酸和 NMDA 受体对皮质扩散抑制的作用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Austin Tuttle;Jorge Riera Diaz;Yoichiro Mori
  • 通讯作者:
    Yoichiro Mori

Yoichiro Mori的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yoichiro Mori', 18)}}的其他基金

Collaborative Research: Analysis and Computation of Dynamics of Elastic Structures in Stokes Flow
合作研究:斯托克斯流中弹性结构动力学分析与计算
  • 批准号:
    1907583
  • 财政年份:
    2019
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Algorithm and Theory for Interface Computations
协作研究:接口计算的算法和理论
  • 批准号:
    1620316
  • 财政年份:
    2016
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Cortical Spreading Depression and Ionic Electrodiffusion in the Brain
合作研究:大脑皮层扩散抑制和离子电扩散
  • 批准号:
    1516978
  • 财政年份:
    2015
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
A Theoretical and Algorithmic Study of the Immersed Boundary Method
浸入边界法的理论与算法研究
  • 批准号:
    0914963
  • 财政年份:
    2009
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400111
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400115
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400112
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344795
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344793
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344790
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344789
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344791
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
Collaborative Research: Investigating the Impact of Video-based Analysis of Classroom Teaching on STEM Teacher Preparation, Effectiveness, and Retention
合作研究:调查基于视频的课堂教学分析对 STEM 教师准备、有效性和保留率的影响
  • 批准号:
    2344792
  • 财政年份:
    2024
  • 资助金额:
    $ 27万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了