Mesoscale Computational Modeling and Analysis of Materials Microstructure

材料微观结构的介观计算建模与分析

基本信息

  • 批准号:
    0915013
  • 负责人:
  • 金额:
    $ 26.78万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-15 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

Most metallic and ceramic materials used in a variety of applications, including aircraft, automobiles, and devices such as computers are polycrystalline, i.e. are made up of many microscopic crystals (grains) held together by boundaries. Grain boundaries have a property called ?grain boundary energy?, which is responsible for how strong the grains are connected to each other. Depending on the energy, polycrystalline structures may have very different properties. Very little is known about this energy and its dependence on the crystallographic nature of the boundary. The main objective of this work is to create efficient mathematical models and numerical algorithms for predicting and controlling materials microstructure by quantifying the kinetics of the coarsening processes and understanding the influence of grain boundary energy on microstructural evolution. The novelty of the proposed approach lies in placing focus on understanding statistical effects of the topological reconfigurations during the grain boundary network evolution. This project will allow to develop a new stochastic framework for mesoscopic analysis of materials based in part on recently discovered evolution equations and an in-depth study of grain disappearance rates. This research will link coarsening processes common to nearly all materials with underlying stochastic processes that characterize specific microstructures by means of accurate and validated computational modeling based on random walk theory, modulated Poisson processes and distributed Boltzmann equations. Significant effort will be dedicated to optimizing performance of numerical algorithms, such as numerical schemes for solving fractional integro-differential equations with nonlocal kernels and methods for parameter estimation in stochastic processes. The models and algorithms developed and analyzed in this project will offer an accurate and low cost alternative to large-scale simulations and other numerical techniques traditionally used in studying interfacial properties of complex materials. This work will lead to control over grain growth kinetics, a primary issue for materials science applications, and to a deeper understanding of the materials parameters and their interaction across different scales. This will have a direct impact on many practically important areas by advancing the synthesis of novel ?smart? materials - highly sophisticated materials, possessing very specific set of properties to target particular applications necessary to meet increasing demands of the society in the era of tremendous economic and environmental challenges. For instance, functional materials that can reliably withstand extreme thermal and pressure environments are indispensable for solving energy-related problems such as improving power plant efficiency, while lighter weight high strength components are required for designing new generation vehicles with reduced fuel consumption. The models developed by the investigator and collaborators will be used to build a suite of algorithms capable of simulating and analyzing microstructures that can be predisposed to certain type of behavior under external stimuli. These methods will allow for faster and more reliable analysis, control and optimization of materials properties and will equip engineers with powerful predictive tools that can be readily transferred to industry for modeling the processing of commodity materials.
在各种应用中使用的大多数金属和陶瓷材料,包括飞机,汽车和计算机等设备都是多晶的,即由许多微观晶体(晶粒)通过边界保持在一起。晶界有一种特性叫做?晶界能,这决定了颗粒之间的连接强度取决于能量,多晶结构可以具有非常不同的性质。关于这种能量及其对边界的晶体学性质的依赖性,我们知之甚少。这项工作的主要目标是建立有效的数学模型和数值算法,通过量化粗化过程的动力学和理解晶界能对微观结构演变的影响,预测和控制材料的微观结构。所提出的方法的新奇在于把重点放在理解统计效应的拓扑重构过程中的晶界网络的演变。该项目将允许开发一个新的随机框架,用于材料的介观分析,部分基于最近发现的演化方程和对晶粒消失率的深入研究。这项研究将链接粗化过程常见的几乎所有材料与潜在的随机过程,通过准确和验证的计算建模的基础上随机游走理论,调制泊松过程和分布式玻尔兹曼方程的具体微观结构的特点。显著的努力将致力于优化性能的数值算法,如数值方案求解分数积分微分方程的非局部内核和方法的参数估计随机过程。该项目中开发和分析的模型和算法将为传统上用于研究复杂材料界面特性的大规模模拟和其他数值技术提供准确且低成本的替代方案。这项工作将导致控制晶粒生长动力学,材料科学应用的主要问题,并更深入地了解材料参数及其在不同尺度上的相互作用。这将通过推进小说的综合而对许多具有实际意义的领域产生直接影响。聪明吗材料-高度复杂的材料,具有非常特定的属性,以满足社会在巨大的经济和环境挑战时代日益增长的需求。例如,能够可靠地承受极端热和压力环境的功能材料对于解决与能源相关的问题(如提高发电厂效率)是必不可少的,而设计新一代车辆时需要更轻的重量高强度部件以降低燃料消耗。研究人员和合作者开发的模型将用于构建一套能够模拟和分析微观结构的算法,这些微观结构可以在外部刺激下倾向于某种类型的行为。这些方法将允许更快,更可靠的分析,控制和优化材料特性,并将为工程师提供强大的预测工具,这些工具可以很容易地转移到工业中,用于模拟商品材料的加工过程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maria Emelianenko其他文献

Orbital-free density functionals based on real and reciprocal space separation
基于实空间和倒易空间分离的无轨道密度泛函
  • DOI:
    10.1038/s41524-025-01643-0
  • 发表时间:
    2025-05-24
  • 期刊:
  • 影响因子:
    11.900
  • 作者:
    Bishal Thapa;Tracey G. Oellerich;Maria Emelianenko;Phanish Suryanarayana;Igor I. Mazin
  • 通讯作者:
    Igor I. Mazin
An efficient algorithm for systematic analysis of nucleotide strings suitable for siRNA design
一种适用于 siRNA 设计的核苷酸串系统分析的有效算法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    1.8
  • 作者:
    Ancha Baranova;Jonathan Bode;G. Manyam;Maria Emelianenko
  • 通讯作者:
    Maria Emelianenko
Set based framework for Gibbs energy minimization
  • DOI:
    10.1016/j.calphad.2014.09.005
  • 发表时间:
    2015-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jeff Snider;Igor Griva;Xiaodi Sun;Maria Emelianenko
  • 通讯作者:
    Maria Emelianenko

Maria Emelianenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maria Emelianenko', 18)}}的其他基金

2015 Fifth Annual Mid-Atlantic Regional Mathematics Student Conference
2015 年第五届大西洋中部地区数学学生年会
  • 批准号:
    1532843
  • 财政年份:
    2015
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Standard Grant
EXTREEMS-QED: Undergraduate Research in Computational and Data-Enabled Mathematics
EXTREEMS-QED:计算和数据数学的本科研究
  • 批准号:
    1407087
  • 财政年份:
    2014
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Standard Grant
CAREER: Developing Mathematical Tools for Modeling Complex Materials Systems
职业:开发用于复杂材料系统建模的数学工具
  • 批准号:
    1056821
  • 财政年份:
    2011
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Characterization of Vocal Fold Vascular Lesions Biomechanics using Computational Modeling
职业:使用计算模型表征声带血管病变生物力学
  • 批准号:
    2338676
  • 财政年份:
    2024
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Rapid computational modeling of wildfires and management with emphasis on human activity
合作研究:RAPID:野火和管理的快速计算建模,重点关注人类活动
  • 批准号:
    2345256
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Standard Grant
REU Site: Computational Modeling Serving Portland
REU 站点:为波特兰服务的计算模型
  • 批准号:
    2244551
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Standard Grant
CAREER: Generative Physical Modeling for Computational Imaging Systems
职业:计算成像系统的生成物理建模
  • 批准号:
    2239687
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Continuing Grant
Computational modeling of IP3 production in neuronal dendritic spines based on the distribution pattern of PIP2 and mGluRs
基于 PIP2 和 mGluR 分布模式的神经元树突棘中 IP3 产生的计算模型
  • 批准号:
    23K19411
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Computational Modeling Core
计算建模核心
  • 批准号:
    10551707
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
Developing a nucleic acid force field with direct chemical perception for computational modeling of nucleic acid therapeutics
开发具有直接化学感知的核酸力场,用于核酸治疗的计算建模
  • 批准号:
    10678562
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
Bottom-up and top-down computational modeling approaches to study CMV retinitis
研究 CMV 视网膜炎的自下而上和自上而下的计算模型方法
  • 批准号:
    10748709
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
Triage of Developmental and Reproductive Toxicants using an In vitro to In Vivo Extrapolation (IVIVE)-Toxicokinetic Computational modeling Application
使用体外到体内外推法 (IVIVE) 对发育和生殖毒物进行分类 - 毒代动力学计算模型应用
  • 批准号:
    10757140
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
HCC: Small: Toward Computational Modeling of Autism Spectrum Disorder: Multimodal Data Collection, Fusion, and Phenotyping
HCC:小型:自闭症谱系障碍的计算模型:多模式数据收集、融合和表型分析
  • 批准号:
    2401748
  • 财政年份:
    2023
  • 资助金额:
    $ 26.78万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了