Treecode-Accelerated Implicit Solvent Models for Biomolecular Simulations

用于生物分子模拟的 Treecode 加速隐式溶剂模型

基本信息

项目摘要

Current biomolecular simulations are unable to reach the long time scales needed to study conformation changes such as protein folding. One of the main obstacles is the high cost of computing the electrostatic forces among the solvent water molecules surrounding the protein. To address this issue, this project adopts an implicit solvent model in which the electrostatic potential satisfies the Poisson-Boltzmann (PB) equation. Numerical solution of the PB equation poses a challenge due to the geometric complexity of the molecular surface, the discontinuity in the dielectric function, and the unbounded computational domain. The investigators will overcome these difficulties by developing a boundary integral PB solver using a new Cartesian treecode algorithm for screened Coulomb interactions. The treecode-accelerated PB solver will be tested on benchmark examples such as Kirkwood's solution for a spherical surface, and the results will be compared with those obtained using other PB solvers. In addition to the electrostatic potential, the code will be extended to compute other important quantities such as the solvation free energy and solvation forces needed for dynamics. One obstacle facing current biomolecular simulations is the expense of computing the self-induced electrostatic forces among the molecules in the system. Advances in computer hardware alone won't achieve the improvements necesssary for studying long time molecular dynamics. This project therefore focuses on improving the mathematical algorithms used in these computer simulations. In addition to enabling more accurate and efficient biomolecular simulations, the algorithms developed will be potentially useful in other applications where electrostatic forces play a role, for example in modeling charge transport in fuel cells. The project will contribute to training the scientific workforce by supporting the research of a postdoc who will be mentored by the PI.
目前的生物分子模拟无法达到研究构象变化(如蛋白质折叠)所需的长时间尺度。其中一个主要障碍是计算蛋白质周围的溶剂水分子之间的静电力的成本很高。为了解决这个问题,本项目采用隐式溶剂模型,其中静电势满足泊松-玻尔兹曼(PB)方程。由于分子表面的几何复杂性、介电函数的不连续以及计算域的无界性,对PB方程的数值求解提出了挑战。研究人员将通过开发一个边界积分PB解算器来克服这些困难,该解算器使用一种新的笛卡尔树码算法来筛选库仑相互作用。树码加速PB求解器将在诸如球面的Kirkwood解等基准实例上进行测试,并将结果与使用其他PB求解器获得的结果进行比较。除了静电势,代码将被扩展到计算其他重要的量,如动力学所需的溶剂化自由能和溶剂化力。当前生物分子模拟面临的一个障碍是计算系统中分子之间自诱导静电力的费用。仅靠计算机硬件的进步并不能实现长期分子动力学研究所必需的改进。因此,这个项目的重点是改进这些计算机模拟中使用的数学算法。除了实现更精确和高效的生物分子模拟外,所开发的算法在静电力发挥作用的其他应用中也有潜在的用处,例如在燃料电池中的电荷传输建模中。该项目将通过支持一名博士后的研究,为培养科学人才做出贡献,该博士后将由PI指导。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Krasny其他文献

Numerical experiments using the barycentric Lagrange treecode to compute correlated random displacements for Brownian dynamics simulations
使用重心拉格朗日树码进行数值实验,以计算用于布朗动力学模拟的相关随机位移
  • DOI:
    10.1016/j.jcp.2025.113743
  • 发表时间:
    2025-03-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Lei Wang;Robert Krasny
  • 通讯作者:
    Robert Krasny
The FARSIGHT Vlasov-Poisson code
远视力弗拉索夫-泊松代码
  • DOI:
    10.1016/j.jcp.2024.113664
  • 发表时间:
    2025-02-15
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Ryan T. Sandberg;Robert Krasny;Alexander G.R. Thomas
  • 通讯作者:
    Alexander G.R. Thomas

Robert Krasny的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Krasny', 18)}}的其他基金

Collaborative Research: Computational Tools for Biomolecular Electrostatics
合作研究:生物分子静电学计算工具
  • 批准号:
    2110767
  • 财政年份:
    2021
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Collaborative Research: Improved Boundary Element Methods for Electrostatics of Interacting Proteins in Solvent
合作研究:溶剂中相互作用蛋白质静电的改进边界元方法
  • 批准号:
    1819094
  • 财政年份:
    2018
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Collaborative Research: Boundary Integral Simulations for Solvent Effects in Protein Structure and Dynamics
合作研究:蛋白质结构和动力学中溶剂效应的边界积分模拟
  • 批准号:
    1418966
  • 财政年份:
    2014
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Continuing Grant
Particle Simulations of Vortex Sheet Motion
涡流片运动的粒子模拟
  • 批准号:
    0510162
  • 财政年份:
    2005
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Particle Simulations in Fluid Dynamics and Molecular Dynamics
流体动力学和分子动力学中的粒子模拟
  • 批准号:
    0107187
  • 财政年份:
    2001
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Computational Study of Vortex Sheet Motion
数学科学:涡片运动的计算研究
  • 批准号:
    9506452
  • 财政年份:
    1995
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Scientific Computation of Physical Problems
物理问题的科学计算
  • 批准号:
    9204271
  • 财政年份:
    1992
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Continuing Grant
SCIENTIFIC COMPUTATION OF PHYSICAL PROBLEMS
物理问题的科学计算
  • 批准号:
    9003965
  • 财政年份:
    1990
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Computational and Analytical Problems in Fluid Mechanics
流体力学的计算和分析问题
  • 批准号:
    8801991
  • 财政年份:
    1988
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Mathematical Sciences Postdoctoral Research Fellowship
数学科学博士后研究奖学金
  • 批准号:
    8414101
  • 财政年份:
    1984
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Fellowship Award

相似海外基金

Digital Solutions For Accelerated Battery Testing
加速电池测试的数字解决方案
  • 批准号:
    10107050
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    EU-Funded
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
  • 批准号:
    EP/Z531261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Research Grant
Accelerated carbon dioxide release from sedimentary rocks in a warming world
在变暖的世界中沉积岩加速二氧化碳释放
  • 批准号:
    NE/Y000838/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Research Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Accelerated discovery of ultra-fast ionic conductors with machine learning
通过机器学习加速超快离子导体的发现
  • 批准号:
    24K08582
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Open-source GPU-accelerated computational infrastructure for coastal fluid-structure interaction in extreme hydrodynamic conditions
职业:极端​​水动力条件下沿海流固耦合的开源 GPU 加速计算基础设施
  • 批准号:
    2338313
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Standard Grant
Artificial intelligence coupled to automation for accelerated medicine design
人工智能与自动化相结合,加速药物设计
  • 批准号:
    EP/Z533038/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Research Grant
Development of Understanding and Preparation for Machine learning for Accelerated Carbonation Technology Pelletisation Process - Carbon8
加速碳酸化技术造粒过程的机器学习的理解和准备的发展 - Carbon8
  • 批准号:
    10091589
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Collaborative R&D
Human models for accelerated robot learning and human-robot interaction
用于加速机器人学习和人机交互的人体模型
  • 批准号:
    DP240101458
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Discovery Projects
Drag Prediction over Rough Surfaces using Hardware-Accelerated Simulations
使用硬件加速模拟对粗糙表面进行阻力预测
  • 批准号:
    DE230100754
  • 财政年份:
    2024
  • 资助金额:
    $ 24.27万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了