Local and Direct discontinuous Galerkin methods: New algorithms and applications

局部和直接间断伽辽金方法:新算法和应用

基本信息

  • 批准号:
    0915247
  • 负责人:
  • 金额:
    $ 9.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2013-08-31
  • 项目状态:
    已结题

项目摘要

This proposal is awarded using funds made available by the American Recoveryand Reinvestment Act of 2009 (Public Law 111-5).The goal of the project is to design, analyze and implement new discontinuous Galerkin(DG) finite element methods solving partial differential equations arising from physics and engineering. DG method is a highly accurate numerical method with the advantage to handle complicated geometries, and apply h-p adaptive strategies in applications. The PI will focus on the development of two discontinuous Galerkin methods. 1)Local discontinuous Galerkin methods: a new DG method is proposed to directly solve Hamilton-Jacobi equations. There is a concept difficulty to design DG methods for Hamilton-Jacobi equation, because it is a nonlinear partial differential equation not in a ?conservative? form. When applied to level set related problems, the method can sharply capture the interface, and has a great potential for further practical applications on two-phase flow problems. To solve static Hamilton-Jacobi equations, the LDG method coupled with fast sweeping method will be developed. The PI and her collaborators will continue to study LDG methods for other nonlinear wave equations. 2)Direct discontinuous Galerkin methods(DDG): a new DG method is proposed to solve diffusion type equations. The novelty of the method is to figure out what terms essentially contribute the most to the solution derivative at the discontinuity. A class of admissible numerical fluxes will be studied and stability and error analysis will be carried out. Interface correction terms are introduced to obtain optimal order of accuracy for the DDG method. Furthermore, the PI will investigate DDG methods on incompressible Navier-Stokes equations in vorticity stream-function formulation. With the successful development of DDG method, efficient and accurate DG methods can be designed to solve problems arising from computational fluid dynamics.The proposed activity lies in its comprehensive coverage of algorithm development, analysis and implementation. The nonlinear problems studied in this project have rich applications and involve interesting physical phenomena. Many fluid problems involve multi-component, examples include bubble/drops, jets, waves and films. These problems have interfaces to separate different materials, and special numerical techniques are required to treat the interface accurately. Discontinuous Galerkin methods produce very small dissipation errors when applying with high order polynomial approximations, thus it is an attractive numerical method for interface capturing. The proposed activity is expected to make positive contributions to broad areas of applications, including (but not limited to) fluid dynamics, computer vision, optimal control, semiconductor device simulation and weather forecasting, among many others. In addition, the investigator will integrate the project with graduate computational mathematics education in order to communicate in a broader context.
该项目的目标是设计、分析和实现新的间断Galerkin(DG)有限元方法,解决物理和工程中产生的偏微分方程。DG方法是一种高精度的数值方法,具有处理复杂几何形状的优势,并在应用中采用h-p自适应策略。PI将专注于开发两种不连续Galerkin方法。1)局部间断Galerkin方法:提出一种直接求解Hamilton-Jacobi方程的DG方法。由于Hamilton-Jacobi方程是一个非线性偏微分方程,其离散差分方法的设计存在概念上的困难。保守派?form.当应用于水平集相关的问题时,该方法可以敏锐地捕捉界面,并在两相流问题的进一步实际应用中具有很大的潜力。为了求解静态Hamilton-Jacobi方程,将LDG方法与快速扫描方法相结合。PI和她的合作者将继续研究其他非线性波动方程的LDG方法。2)直接间断Galerkin方法(DDG):提出一种求解扩散型方程的新DG方法.该方法的新奇在于找出哪些项本质上对不连续处的解导数贡献最大。研究了一类容许的数值通量,并进行了稳定性和误差分析。界面修正项的引入,以获得DDG方法的精度的最佳顺序。此外,PI将研究DDG方法对不可压缩Navier-Stokes方程的涡量流函数公式。随着DDG方法的成功开发,可以设计高效和精确的DG方法来解决计算流体力学中出现的问题。拟议的活动在于其全面覆盖算法开发,分析和实现。本项目所研究的非线性问题有着丰富的应用,涉及到许多有趣的物理现象。许多流体问题涉及多组分,例如气泡/液滴,射流,波和薄膜。这些问题有界面来分离不同的材料,需要特殊的数值技术来精确地处理界面。间断Galerkin方法在应用高阶多项式近似时产生很小的耗散误差,因此它是一种有吸引力的界面捕捉数值方法。预计拟议的活动将对广泛的应用领域作出积极贡献,包括(但不限于)流体动力学、计算机视觉、最佳控制、半导体器件模拟和天气预报等。此外,研究人员将把该项目与研究生计算数学教育相结合,以便在更广泛的背景下进行交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jue Yan其他文献

[A comparison of ventilation/perfusion single photon emission CT and CT pulmonary angiography for diagnosis of pulmonary embolism].
通气/灌注单光子发射CT与CT肺血管造影诊断肺栓塞的比较
Direct Discontinuous Galerkin Method with Interface Correction for the Keller-Segel Chemotaxis Model
  • DOI:
    10.1007/s10915-024-02648-5
  • 发表时间:
    2024-08-17
  • 期刊:
  • 影响因子:
    3.300
  • 作者:
    Xinghui Zhong;Changxin Qiu;Jue Yan
  • 通讯作者:
    Jue Yan
A New Nonsymmetric Discontinuous Galerkin Method for Time Dependent Convection Diffusion Equations
A preliminary study of imaging paclitaxel-induced tumor apoptosis with (99)Tc(m)-His10-Annexin V.
(99)Tc(m)-His10-Annexin V 成像紫杉醇诱导的肿瘤细胞凋亡的初步研究。
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Yu;Feng Wang;W. Fang;Zi;Zizheng Wang;Q. Meng;Jue Yan
  • 通讯作者:
    Jue Yan
Improved image resolution on thoracic carcinomas by quantitative 18F-FDG coincidence SPECT/CT in comparison to 18F-FDG PET/CT
与 18F-FDG PET/CT 相比,定量 18F-FDG 符合 SPECT/CT 提高了胸癌的图像分辨率
  • DOI:
    10.7555/jbr.33.20190004
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Yu;Chaoling Jin;H. Cui;Hao;Jue Yan;Pingping Han;B. Hsu
  • 通讯作者:
    B. Hsu

Jue Yan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jue Yan', 18)}}的其他基金

Conference: Midwest Numerical Analysis Day 2023
会议:2023 年中西部数值分析日
  • 批准号:
    2308780
  • 财政年份:
    2023
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Positivity preserving limiter and new development on elliptic interface problems
椭圆界面问题的保正限制器及新进展
  • 批准号:
    1620335
  • 财政年份:
    2016
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant

相似国自然基金

基于 Direct RNA sequencing 的 RNA 甲基化介导贻贝天然免疫调控的表观遗传机制研究
  • 批准号:
    LR22D060002
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
新型滤波器综合技术-直接综合技术(Direct synthesis Technique)的研究及应用
  • 批准号:
    61671111
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Next Generation Glioma Treatments using Direct Light Therapy
使用直接光疗法的下一代神经胶质瘤治疗
  • 批准号:
    10092859
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    EU-Funded
Direct Measurement of Interfacial Energies in Ceramics
陶瓷界面能的直接测量
  • 批准号:
    2414106
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Continuing Grant
Direct identificationによる膵癌HLAリガンドームの解明
通过直接鉴定阐明胰腺癌 HLA 配体组
  • 批准号:
    24K10425
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Chromaticity-adaptive direct white light generation from luminescent carbogenic nanomaterials coupled with nanophotonic cavity
发光碳原纳米材料与纳米光子腔耦合产生色度自适应直接白光
  • 批准号:
    24K17589
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
EAGER: Direct Ink Writing of Molecularly Patterned Polyionic Actuators
EAGER:分子图案化聚离子致动器的直接墨水书写
  • 批准号:
    2232659
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Standard Grant
Early-life climate sensitivity: direct and indirect mechanisms
生命早期的气候敏感性:直接和间接机制
  • 批准号:
    DP240100330
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Discovery Projects
Direct conversionによる誘導腱細胞を用いた横隔膜筋腱複合体MTCシートの開発
使用诱导肌腱细胞直接转化开发膈肌肌腱复合体 MTC 片
  • 批准号:
    24K10982
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
新規direct-cKOシステムでの必須遺伝子探索とその網羅的解析基盤の構築
利用新的direct-cKO系统寻找必需基因并构建综合分析平台
  • 批准号:
    23K23800
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Proposal Title : NemeSys - Smart Multiphasic Nanoreactors Based On Tailored Foams for Direct H2O2 Synthesis
提案标题:NemeSys - 基于定制泡沫的智能多相纳米反应器,用于直接合成 H2O2
  • 批准号:
    EP/Y034392/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Research Grant
Mechanochemical processing of silicate rocks for direct carbon capture (MACO2)
用于直接碳捕获的硅酸盐岩石的机械化学处理(MACO2)
  • 批准号:
    EP/Y021592/1
  • 财政年份:
    2024
  • 资助金额:
    $ 9.92万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了