FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity

FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法

基本信息

项目摘要

The aim of this project is to bring together tools from Fourier analysis, affine convex geometry, geometric functional analysis, probability theory, and combinatorics to attack problems arising in geometry, analysis, and in various areas of applied mathematics and computer science. On the technical level, the focus is on the study of properties of (generally high-dimensional) convex bodies, random matrices, Gaussian measures and processes, and of approximation problems. Specific sample directions of planned research are related to the slicing problem, the Mahler conjecture, the Gaussian correlation conjecture, combinatorial dimensions of classes of functions, singular numbers of random matrices, signal reconstruction (notably, compressed sensing), and links to quantum information theory. A combined, focused effort is expected to bring new insights toward a better understanding of the participants' respective fields of research, which - while related and occasionally overlapping - are not identical and often employ different perspectives.The area of mathematics encompassing the methods and the problems described above has recently entered a period of rapid growth. In large part this is due to numerous links to other fields such as computer science and mathematical physics. In a nutshell, the wealth of connections between high-dimensional convexity and applications is due to the complexity of the systems (e.g., physical, biological or economical) that one wants to analyze: the large number of free parameters in such systems may be reflected in the large dimension of the mathematical object that serves as a model. Additionally, many results in, say, geometric functional analysis, can be presented as statements about the complexity of high dimensional objects in presence of convexity; this explains the links to computer science. In addition to research per se, a major component of this project is the training of postdocs and graduate students in an integrated research environment. This includes organization of a summer school and of a conference. Workshops and seminars devoted to the project at each institution are also planned. The dynamic growth of the area and wealth of applications makes it an ideal topic of study for graduate students and young researchers, whom we expect to attract. Special attention will be paid to recruiting members of groups under-represented in the field of mathematics.
该项目的目的是将傅立叶分析、仿射凸几何、几何泛函分析、概率论和组合学中的工具结合起来,以解决几何、分析以及应用数学和计算机科学各个领域中出现的问题。在技术层面上,重点是研究(通常是高维)凸体、随机矩阵、高斯测度和过程以及近似问题的性质。计划研究的具体样本方向与切片问题、马勒猜想、高斯相关猜想、函数类的组合维数、随机矩阵的奇异数、信号重构(特别是压缩感知)以及与量子信息理论的联系有关。一个综合的、集中的努力有望为更好地理解参与者各自的研究领域带来新的见解,这些领域虽然相关,有时重叠,但并不相同,往往采用不同的观点。包含上述方法和问题的数学领域最近进入了一个快速增长的时期。在很大程度上,这是由于与计算机科学和数学物理等其他领域的众多联系。简而言之,高维凸性和应用之间的丰富联系是由于人们想要分析的系统(例如,物理的,生物的或经济的)的复杂性:这些系统中的大量自由参数可能反映在作为模型的数学对象的大维度上。此外,许多结果,比如几何泛函分析,可以作为关于高维物体在凸性存在下的复杂性的陈述;这解释了与计算机科学的联系。除了研究本身,这个项目的一个主要组成部分是在一个综合研究环境中培养博士后和研究生。这包括组织暑期学校和会议。还计划在每个机构举办专门讨论该项目的讲习班和讨论会。该领域的动态增长和丰富的应用使其成为研究生和年轻研究人员的理想研究课题,我们希望吸引他们。将特别注意征聘在数学领域代表性不足的群体的成员。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Roman Vershynin其他文献

Are most Boolean functions determined by low frequencies?
大多数布尔函数是由低频决定的吗?
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roman Vershynin
  • 通讯作者:
    Roman Vershynin
Hamiltonicity of Sparse Pseudorandom Graphs
稀疏伪随机图的哈密顿性
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Asaf Ferber;Jie Han;Dingjia Mao;Roman Vershynin
  • 通讯作者:
    Roman Vershynin
The quarks of attention: Structure and capacity of neural attention building blocks
注意力的夸克:神经注意力构建模块的结构与容量
  • DOI:
    10.1016/j.artint.2023.103901
  • 发表时间:
    2023-06-01
  • 期刊:
  • 影响因子:
    4.600
  • 作者:
    Pierre Baldi;Roman Vershynin
  • 通讯作者:
    Roman Vershynin
LECTURES ON FUNCTIONAL ANALYSIS
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Roman Vershynin
  • 通讯作者:
    Roman Vershynin
Metric geometry of the privacy-utility tradeoff
隐私与效用权衡的度量几何
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Boedihardjo;T. Strohmer;Roman Vershynin
  • 通讯作者:
    Roman Vershynin

Roman Vershynin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Roman Vershynin', 18)}}的其他基金

High-Dimensional Probability for High-Dimensional Data
高维数据的高维概率
  • 批准号:
    1954233
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Mathematical Framework for Generating Synthetic Data
协作研究:生成综合数据的数学框架
  • 批准号:
    2027299
  • 财政年份:
    2020
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Geometric functional analysis, random matrices and applications
几何泛函分析、随机矩阵及其应用
  • 批准号:
    1265782
  • 财政年份:
    2013
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
Non-asymptotic problems on random operators in geometric functional analysis and applications
几何泛函分析中随机算子的非渐近问题及其应用
  • 批准号:
    1001829
  • 财政年份:
    2010
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
  • 批准号:
    0652617
  • 财政年份:
    2007
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
Combinatorial and Probabilistic Approach to Geometric Functional Analysis and Applications
几何泛函分析和应用的组合和概率方法
  • 批准号:
    0401032
  • 财政年份:
    2004
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 20.57万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了