High-Dimensional Probability for High-Dimensional Data
高维数据的高维概率
基本信息
- 批准号:1954233
- 负责人:
- 金额:$ 36万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Artificial Intelligence is undergoing a revolution that is fueled by empirical successes of deep learning, a class of machine learning methods based on artificial neural networks. These successes reverberate across a broad spectrum of data science problems. Nevertheless, theoretical understanding of deep learning is scarce. This project is aimed at building rigorous mathematical foundations for modern and future approaches to learning from big data. High-dimensional probability is proposed as a natural framework for the mathematical exploration of deep learning. This project has a double benefit. On the one hand, it is aimed at theoretically explaining the successes of deep learning. On the other hand, the project will inspire future theoretical developments in high-dimensional probability, especially in random matrix theory. The project also provides research training opportunities for graduate students. This project will address theoretical problems in high-dimensional probability that are inspired by open problems in data science. A pressing need for mathematical justification is evident in the area of deep learning, whose stunning success on real-world data applications is not theoretically explained yet. This project proposes high-dimensional probability as a natural framework for the mathematical exploration of deep learning. A unifying theme of most of the problems in this proposal is nonlinear random matrix theory, where random matrices are transformed by a nonlinearity, which alters their spectral and geometric behavior. Nonlinearities empower neural networks and quantizers, underlie the concepts of random Boolean threshold functions, random tensors and geometric graphs. Exploring the unusual spectral behavior of pseudolinear and inhomogeoenous random matrices are the main general thrust of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习是一种基于人工神经网络的机器学习方法,在深度学习的经验成功推动下,人工智能正在经历一场革命。这些成功在广泛的数据科学问题中产生了反响。然而,对深度学习的理论理解是稀缺的。该项目旨在为现代和未来从大数据中学习的方法建立严格的数学基础。高维概率被提出作为深度学习数学探索的自然框架。这个项目有双重好处。一方面,它旨在从理论上解释深度学习的成功。另一方面,该项目将对高维概率,特别是随机矩阵理论的未来理论发展产生启发。该项目还为研究生提供研究培训机会。该项目将解决高维概率中的理论问题,这些问题受到数据科学中开放问题的启发。在深度学习领域,对数学证明的迫切需求是显而易见的,深度学习在现实世界数据应用上的惊人成功还没有从理论上得到解释。该项目提出高维概率作为深度学习数学探索的自然框架。这个建议中大多数问题的一个统一主题是非线性随机矩阵理论,其中随机矩阵被非线性变换,这改变了它们的光谱和几何行为。非线性增强了神经网络和量化器的能力,是随机布尔阈值函数、随机张量和几何图的基础。探索伪线性和非齐次随机矩阵的异常光谱行为是本项目的主要总推力。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Memory Capacity of Neural Networks with Threshold and Rectified Linear Unit Activations
- DOI:10.1137/20m1314884
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:R. Vershynin
- 通讯作者:R. Vershynin
Private measures, random walks, and synthetic data
- DOI:10.48550/arxiv.2204.09167
- 发表时间:2022-04
- 期刊:
- 影响因子:0
- 作者:M. Boedihardjo;T. Strohmer;R. Vershynin
- 通讯作者:M. Boedihardjo;T. Strohmer;R. Vershynin
Covariance’s Loss is Privacy’s Gain: Computationally Efficient, Private and Accurate Synthetic Data
- DOI:10.1007/s10208-022-09591-7
- 发表时间:2021-07
- 期刊:
- 影响因子:3
- 作者:M. Boedihardjo;T. Strohmer;R. Vershynin
- 通讯作者:M. Boedihardjo;T. Strohmer;R. Vershynin
A theory of capacity and sparse neural encoding
容量和稀疏神经编码理论
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:7.8
- 作者:Baldi, Pierre;Vershynin, Roman
- 通讯作者:Vershynin, Roman
Privacy of Synthetic Data: A Statistical Framework
- DOI:10.1109/tit.2022.3216793
- 发表时间:2021-09
- 期刊:
- 影响因子:2.5
- 作者:M. Boedihardjo;T. Strohmer;R. Vershynin
- 通讯作者:M. Boedihardjo;T. Strohmer;R. Vershynin
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roman Vershynin其他文献
Are most Boolean functions determined by low frequencies?
大多数布尔函数是由低频决定的吗?
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Roman Vershynin - 通讯作者:
Roman Vershynin
Hamiltonicity of Sparse Pseudorandom Graphs
稀疏伪随机图的哈密顿性
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Asaf Ferber;Jie Han;Dingjia Mao;Roman Vershynin - 通讯作者:
Roman Vershynin
The quarks of attention: Structure and capacity of neural attention building blocks
注意力的夸克:神经注意力构建模块的结构与容量
- DOI:
10.1016/j.artint.2023.103901 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:4.600
- 作者:
Pierre Baldi;Roman Vershynin - 通讯作者:
Roman Vershynin
LECTURES ON FUNCTIONAL ANALYSIS
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Roman Vershynin - 通讯作者:
Roman Vershynin
Metric geometry of the privacy-utility tradeoff
隐私与效用权衡的度量几何
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
M. Boedihardjo;T. Strohmer;Roman Vershynin - 通讯作者:
Roman Vershynin
Roman Vershynin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roman Vershynin', 18)}}的其他基金
Collaborative Research: A Mathematical Framework for Generating Synthetic Data
协作研究:生成综合数据的数学框架
- 批准号:
2027299 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Geometric functional analysis, random matrices and applications
几何泛函分析、随机矩阵及其应用
- 批准号:
1265782 - 财政年份:2013
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
Non-asymptotic problems on random operators in geometric functional analysis and applications
几何泛函分析中随机算子的非渐近问题及其应用
- 批准号:
1001829 - 财政年份:2010
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0918623 - 财政年份:2008
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Fourier analytic and probabilistic methods in geometric functional analysis and convexity
FRG:协作研究:几何泛函分析和凸性中的傅里叶分析和概率方法
- 批准号:
0652617 - 财政年份:2007
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Combinatorial and Probabilistic Approach to Geometric Functional Analysis and Applications
几何泛函分析和应用的组合和概率方法
- 批准号:
0401032 - 财政年份:2004
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
相似海外基金
RTG: Networks: Foundations in Probability, Optimization, and Data Sciences
RTG:网络:概率、优化和数据科学基础
- 批准号:
2134107 - 财政年份:2022
- 资助金额:
$ 36万 - 项目类别:
Continuing Grant
The challenges of moving face-to-face probability-based panel surveys to online data collection
将面对面的基于概率的小组调查转向在线数据收集的挑战
- 批准号:
2623056 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Studentship
Small area estimation, combining data from multiple sources, and inference from non-probability samples
小区域估计,结合多个来源的数据,以及非概率样本的推断
- 批准号:
RGPIN-2019-06181 - 财政年份:2021
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
The method to determine the probability of disease severity by bayesian statistical analysis in a small number of patient data.
通过对少量患者数据进行贝叶斯统计分析来确定疾病严重程度概率的方法。
- 批准号:
20K12716 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Small area estimation, combining data from multiple sources, and inference from non-probability samples
小区域估计,结合多个来源的数据,以及非概率样本的推断
- 批准号:
RGPIN-2019-06181 - 财政年份:2020
- 资助金额:
$ 36万 - 项目类别:
Discovery Grants Program - Individual
Conferences for New Researchers in Statistics, Probability, and Data Science
统计、概率和数据科学新研究人员会议
- 批准号:
1913015 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
CIF: Small: Information Theory Meets Deep Learning: Universal Probability and Common Information for High-Dimensional Data
CIF:小:信息论遇见深度学习:高维数据的普遍概率和公共信息
- 批准号:
1911238 - 财政年份:2019
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Dynamical systems approach to robust reconstruction of probability distributions of observed data
观测数据概率分布稳健重建的动力系统方法
- 批准号:
415860776 - 财政年份:2018
- 资助金额:
$ 36万 - 项目类别:
Research Grants
BIGDATA: F: Towards Automating Data Analysis: Interpretable, Interactive, and Scalable Learning via Discrete Probability
BIGDATA:F:迈向自动化数据分析:通过离散概率进行可解释、交互式和可扩展的学习
- 批准号:
1741341 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Standard Grant
Construction of The Health Process Model System based on State Transition Probability to utilize NDB Big Data
利用NDB大数据构建基于状态转移概率的健康过程模型系统
- 批准号:
17K01820 - 财政年份:2017
- 资助金额:
$ 36万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




