EAGER: Optical Catalytic Conversion of Methane to Longer Chain Hydrocarbons
EAGER:甲烷光催化转化为长链碳氢化合物
基本信息
- 批准号:0921729
- 负责人:
- 金额:$ 7.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-10-01 至 2010-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Methane is an abundant hydrocarbon whose components could be used as 1) a source for hydrogen needed in fuel cells, 2) as the building block for methanol (a liquid fuel) or 3) as a building block from which longer chain hydrocarbons can be synthesized. According to the EPA, methane gas in the atmosphere has a lifetime anywhere from 9 to 15 years, and is 20 times more potent in trapping heat than CO2. High gain techniques to achieve the conversion of methane to liquid fuels could yield significant benefit by producing clean, low cost fuels and by capturing methane before it is released into the atmosphere. Unfortunately, it is estimated that approximately half of the proven reserve of methane is ?stranded?, whereby access to the natural gas is effectively blocked by issues related to terrain and the economics of converting the natural gas to liquid for efficient transport. A compact, high gain process is needed that would convert methane gas to a room temperature liquid (such as diesel) and (ideally) be sufficiently portable to enable access to stranded gas.The PI proposes a fundamentally new method to achieve photo-catalytic gain in chemical reaction systems. Although this proposal is focused on methane gas (for reasons described below), there is reason to believe that the approach, if successful, could be applied to various other chemical reaction processes. Significance and Intellectual Merit:Photo-catalytic gain using an approach as described in this proposal is a new concept that promises interesting short and long-term benefits to both science and industry alike. Although basic research on excited states in methane gas (the proposed test bed of choice) has been performed and reported in the literature, no group has identified the opportunity to achieve photoassisted gain in a chemical process as envisioned herein. This silence suggests either that the opportunity has not been realized, or any attempts to achieve gain using this approach has not yielded positive results. Therefore, the proposed project is high risk. The PI?s broad experience in experimental physics, optics and weak signal detection, combined with his extensive project management experience, promises an efficient and timely focused study of the feasibility of achieving catalytic gain in this fashion. A successful demonstration of the operation of the proposed process in this one selected area would open up research opportunities in a wide range of new applications, would offer a compact, low cost method to convert methane gas to liquid fuels, and would offer new ways to tackle greenhouse gas conversion and containment.Broader Impact:The use of catalysts in many chemical reactions often suffers from the eventual fatigue of the catalytic surface due to the slow deposit of impurities. In some production environments, the replacement of the catalyst can mean long, expensive ?down times?. Should the photo-catalytic gain proposed here prove successful in the reaction of methane gas to form longer chain hydrocarbons, it is likely that there will be analogous meta-stable states in the reactants of other reactions, thereby enabling the use of photo-catalysis instead of the use of physical catalysts. A successful demonstration of the principles cited here could trigger a widespread search for other reactions that could benefit greatly from the use of photons to catalyze reactions.
甲烷是一种丰富的碳氢化合物,其组分可用作1)燃料电池中所需的氢源,2)甲醇(液体燃料)的结构单元或3)合成更长链烃的结构单元。根据美国环保署的数据,甲烷气体在大气中的寿命从9年到15年不等,其捕获热量的能力是二氧化碳的20倍。实现甲烷转化为液体燃料的高增益技术可以通过生产清洁、低成本的燃料和在甲烷释放到大气中之前捕获甲烷来产生显著的效益。不幸的是,据估计,甲烷已探明储量的大约一半是?搁浅?由此与地形和将天然气转化为液体以进行有效运输的经济性相关的问题有效地阻碍了对天然气的获取。需要一种紧凑、高增益的工艺,该工艺将甲烷气体转化为室温液体(如柴油),并且(理想地)足够便携以能够获得滞留气体。PI提出了一种全新的方法来实现化学反应系统中的光催化增益。尽管该提案的重点是甲烷气体(原因如下所述),但有理由相信该方法如果成功,可以应用于各种其他化学反应过程。意义和知识价值:使用本提案中描述的方法的光催化增益是一个新概念,它对科学和工业都有着有趣的短期和长期利益。虽然在甲烷气体中的激发态的基础研究(建议的测试床的选择)已经进行,并在文献中报道,没有组已经确定的机会,以实现光辅助增益在化学过程中,如本文所设想的。这种沉默表明,要么机会没有实现,要么利用这一方法获得收益的任何尝试都没有产生积极的结果。因此,拟建项目风险较大。私家侦探?他在实验物理、光学和弱信号检测方面的丰富经验,加上他丰富的项目管理经验,保证了以这种方式实现催化增益的可行性的有效和及时的重点研究。在这一选定的领域的操作的成功示范的拟议的过程将开辟在广泛的新应用的研究机会,将提供一个紧凑的,低成本的方法来转换甲烷气体的液体燃料,并将提供新的方法来解决温室气体的转换和containment.Broader影响:在许多化学反应中使用的催化剂往往遭受最终疲劳的催化剂表面由于缓慢的杂质存款。在某些生产环境中,更换催化剂可能意味着时间长、成本高?停机时间?如果这里提出的光催化增益在甲烷气体形成较长链烃的反应中证明是成功的,则在其他反应的反应物中可能存在类似的亚稳态,从而使得能够使用光催化而不是使用物理催化剂。这里引用的原理的成功演示可能会引发对其他反应的广泛搜索,这些反应可以从使用光子催化反应中受益匪浅。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Roger Dube其他文献
Increasing the presence of BIPOC researchers in computational science
增加 BIPOC 研究人员在计算科学领域的存在感
- DOI:
10.1038/s43588-024-00693-6 - 发表时间:
2024-09-24 - 期刊:
- 影响因子:18.300
- 作者:
Christine Yifeng Chen;Alan Christoffels;Roger Dube;Kamuela Enos;Juan E. Gilbert;Sanmi Koyejo;Jason Leigh;Carlo Liquido;Amy McKee;Kari Noe;Tai-Quan Peng;Karaitiana Taiuru - 通讯作者:
Karaitiana Taiuru
Roger Dube的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Roger Dube', 18)}}的其他基金
REU Site: Imaging in the Physical Sciences
REU 网站:物理科学中的成像
- 批准号:
1359361 - 财政年份:2014
- 资助金额:
$ 7.91万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Nonlinear Dynamics of Exciton-Polarons in Two-Dimensional Metal Halides Probed by Quantum-Optical Methods
职业:通过量子光学方法探测二维金属卤化物中激子极化子的非线性动力学
- 批准号:
2338663 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Continuing Grant
RII Track-4:NSF: Integrated Electrochemical-Optical Microscopy for High Throughput Screening of Electrocatalysts
RII Track-4:NSF:用于高通量筛选电催化剂的集成电化学光学显微镜
- 批准号:
2327025 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Standard Grant
Underwater Robot Navigation and Localization During Recovery by Optical Homing and Penning
水下机器人在回收过程中通过光学寻的和潘宁进行导航和定位
- 批准号:
2330416 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Standard Grant
CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
- 批准号:
2340973 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Continuing Grant
Electric and optical manipulation of 2D excitons for room temperature polariton blockade and valley qubits
用于室温极化子封锁和谷量子位的二维激子的电和光操纵
- 批准号:
EP/Y021789/1 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Research Grant
INTEPS - INtegrated optical ThErmal Phosphorescence System
INTEPS - 集成光学热磷光系统
- 批准号:
10089333 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Collaborative R&D
Optical and wireless sensors networks for 6G scenarios - -OWIN6G
6G场景的光学和无线传感器网络 - -OWIN6G
- 批准号:
EP/Y034538/1 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Research Grant
Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
- 批准号:
EP/Z000548/1 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Research Grant
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
- 批准号:
EP/X031918/1 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Fellowship
MEMS-metasurface Based Tunable Optical Vortex Lasers for smart free-space communication
用于智能自由空间通信的基于 MEMS 超表面的可调谐光学涡旋激光器
- 批准号:
EP/X034542/2 - 财政年份:2024
- 资助金额:
$ 7.91万 - 项目类别:
Research Grant