CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs

职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号

基本信息

  • 批准号:
    2340973
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-07-01 至 2029-06-30
  • 项目状态:
    未结题

项目摘要

Since their invention two decades ago, optical frequency combs have become one of the most important tools in precision measurement. They are used in trace gas spectroscopy for the detection of chemical hazards and disease-correlated biomarkers, in stellar spectroscopy in the search for Earth-like exoplanets, and as critical components of optical atomic clocks. Although their use is now ubiquitous, optical frequency combs are largely confined to specialized optics laboratories. However, this is changing. Recently, optical frequency combs have been realized using chip-scale microring cavities and the nonlinear Kerr effect. The promise of these “microcombs” lies in the possibility of replacing a research laboratory dedicated to precision measurement with a comb-on-a-chip platform that can perform precision measurements far from the optics lab. As with many precision measurement instruments, microcomb precision is limited by material thermal noise, a limitation which is worsened by the small volume of the microring. Building on recent work investigating how material noise affects comb precision, Drake and her team will develop a technique for microcomb noise reduction based on novel cavity geometries and comb operation. Decoupling material thermodynamics from the properties of the comb light represents an important and necessary milestone for the use of microcombs as state-of-the-art precision measurement instruments.The PI proposes an in-depth investigation of the coupling of material thermal noise to the properties of microresonator optical frequency combs with the dual goals of better understanding and predicting the fundamental noise processes in microresonator optical frequency combs and creating microcomb systems with reduced thermal phase noise in both their microwave and optical frequencies. While the thermodynamics of matter are generally well understood, the intersection of thermal noise and nonlinear optics remains largely unexplored. In microcombs, the transduction of thermal fluctuations in the resonator material properties to noise on properties of the comb light (the microwave repetition rate or the optical comb modes) is highly dependent on the details of the comb state, include the Raman self-frequency shift and the presence of dispersive waves. This project encompasses a theoretical and experimental study of the connection between thermal and frequency/phase noise in microresonator frequency combs by introducing geometries and techniques that alter this relationship and that can be utilized to produce ultra-low phase noise signals. The overall goal of the research is the generation of low phase noise signals (primarily microwave and potentially optical as well) in low-cost, room temperature systems with the potential for future photonic integration. The PI will also develop a summer academy for area STEM educators focused on design and construction of optics-based projects (Optical Technology Inventors and Makers Academy, OPTIMA). Attendees will learn the principles of optics and optical design and will be encouraged to create optics projects that can be used as teaching material in their classes. In the long term, the PI plans to expand this program to the wider Albuquerque community by partnering with organizations such as local area makerspaces and the Albuquerque Astronomical Society.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自二十年前发明以来,光学频率梳已成为精密测量中最重要的工具之一。它们用于痕量气体光谱学,用于检测化学危害和疾病相关的生物标志物,用于恒星光谱学,用于寻找类地系外行星,并作为光学原子钟的关键部件。虽然它们的使用现在是无处不在的,光学频率梳主要局限于专业的光学实验室。然而,这种情况正在改变。近年来,利用芯片级微腔和非线性克尔效应实现了光频梳。这些“微梳”的前景在于,可以用芯片上的梳平台取代专门用于精密测量的研究实验室,该平台可以在远离光学实验室的地方进行精密测量。与许多精密测量仪器一样,微梳精度受到材料热噪声的限制,这种限制因微梳的小体积而恶化。在最近研究材料噪声如何影响梳精度的基础上,Drake和她的团队将开发一种基于新型腔体几何形状和梳操作的微梳降噪技术。将材料热力学与梳状光的性质解耦是使用微梳作为最先进的精密测量仪器的一个重要和必要的里程碑。深入研究材料热噪声与微谐振器光频梳特性的耦合,其双重目标是更好地理解和预测微谐振器光频梳中的基本噪声过程以及产生在其微波和光学频率中具有降低的热相位噪声的微梳系统。虽然物质的热力学一般都很好地理解,热噪声和非线性光学的交叉点仍然在很大程度上未被探索。在微梳中,谐振器材料特性中的热波动到梳状光特性(微波重复率或光学梳模式)上的噪声的转换高度依赖于梳状状态的细节,包括拉曼自频移和色散波的存在。该项目包括通过引入改变这种关系的几何形状和技术,并可用于产生超低相位噪声信号,在微谐振器频率梳的热和频率/相位噪声之间的连接的理论和实验研究。该研究的总体目标是在低成本、室温系统中产生低相位噪声信号(主要是微波信号,也可能是光学信号),并具有未来光子集成的潜力。PI还将为地区STEM教育工作者开发一个暑期学院,专注于光学项目的设计和建设(光学技术发明者和制造者学院,OPTIMA)。与会者将学习光学和光学设计的原则,并将被鼓励创建光学项目,可用作课堂教学材料。从长远来看,PI计划通过与当地创客空间和阿尔伯克基天文学会等组织合作,将该计划扩展到更广泛的阿尔伯克基社区。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tara Drake其他文献

Tara Drake的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Ultralow emission panel systems for rapid modular construction
用于快速模块化构造的超低排放面板系统
  • 批准号:
    LP220100407
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Linkage Projects
Symmetry-directed Epitaxy Growth of 2D Semiconducting Transition Metal Dichalcogenides with continuous single crystallinity and ultralow defect density
具有连续单晶度和超低缺陷密度的二维半导体过渡金属二硫属化物的对称定向外延生长
  • 批准号:
    23H00253
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
  • 批准号:
    RGPIN-2018-05635
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
New Series Type Hybrid Circuit Breakers: Fault Protection with Ultralow Loss and Ultrafast Response for Future DC Power Networks
新型系列混合断路器:为未来直流电网提供超低损耗和超快响应的故障保护
  • 批准号:
    RGPIN-2022-03226
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
A Program in Ultralow-Temperature Atomic Physics
超低温原子物理项目
  • 批准号:
    2208004
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Breakthrough in fundamental technology for ultralow-power neuromorphic hardware
超低功耗神经形态硬件基础技术取得突破
  • 批准号:
    21H04887
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of cryogenic ultralow-voltage optical modulator for optical interconnection for superconducting quantum computing
超导量子计算光互连低温超低压光调制器的研制
  • 批准号:
    21K18169
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Next-generation ultralow-noise mechanical sensors defined and controlled by light
由光定义和控制的下一代超低噪声机械传感器
  • 批准号:
    RGPIN-2018-05635
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Grants Program - Individual
Atomically Thin Oxides for Ultralow Power Non-volatile Memory Technology
用于超低功耗非易失性存储器技术的原子薄氧化物
  • 批准号:
    2606804
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
CAREER: New Classical and Quantum Algorithms for Quantum Dynamics of Molecular Collisions and Chemical Reactions at Ultralow Temperatures
职业:超低温下分子碰撞和化学反应的量子动力学的新经典和量子算法
  • 批准号:
    2045681
  • 财政年份:
    2021
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了