CAREER: Ultralow phase noise signal generation using Kerr-microresonator optical frequency combs
职业:使用克尔微谐振器光学频率梳生成超低相位噪声信号
基本信息
- 批准号:2340973
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-07-01 至 2029-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Since their invention two decades ago, optical frequency combs have become one of the most important tools in precision measurement. They are used in trace gas spectroscopy for the detection of chemical hazards and disease-correlated biomarkers, in stellar spectroscopy in the search for Earth-like exoplanets, and as critical components of optical atomic clocks. Although their use is now ubiquitous, optical frequency combs are largely confined to specialized optics laboratories. However, this is changing. Recently, optical frequency combs have been realized using chip-scale microring cavities and the nonlinear Kerr effect. The promise of these “microcombs” lies in the possibility of replacing a research laboratory dedicated to precision measurement with a comb-on-a-chip platform that can perform precision measurements far from the optics lab. As with many precision measurement instruments, microcomb precision is limited by material thermal noise, a limitation which is worsened by the small volume of the microring. Building on recent work investigating how material noise affects comb precision, Drake and her team will develop a technique for microcomb noise reduction based on novel cavity geometries and comb operation. Decoupling material thermodynamics from the properties of the comb light represents an important and necessary milestone for the use of microcombs as state-of-the-art precision measurement instruments.The PI proposes an in-depth investigation of the coupling of material thermal noise to the properties of microresonator optical frequency combs with the dual goals of better understanding and predicting the fundamental noise processes in microresonator optical frequency combs and creating microcomb systems with reduced thermal phase noise in both their microwave and optical frequencies. While the thermodynamics of matter are generally well understood, the intersection of thermal noise and nonlinear optics remains largely unexplored. In microcombs, the transduction of thermal fluctuations in the resonator material properties to noise on properties of the comb light (the microwave repetition rate or the optical comb modes) is highly dependent on the details of the comb state, include the Raman self-frequency shift and the presence of dispersive waves. This project encompasses a theoretical and experimental study of the connection between thermal and frequency/phase noise in microresonator frequency combs by introducing geometries and techniques that alter this relationship and that can be utilized to produce ultra-low phase noise signals. The overall goal of the research is the generation of low phase noise signals (primarily microwave and potentially optical as well) in low-cost, room temperature systems with the potential for future photonic integration. The PI will also develop a summer academy for area STEM educators focused on design and construction of optics-based projects (Optical Technology Inventors and Makers Academy, OPTIMA). Attendees will learn the principles of optics and optical design and will be encouraged to create optics projects that can be used as teaching material in their classes. In the long term, the PI plans to expand this program to the wider Albuquerque community by partnering with organizations such as local area makerspaces and the Albuquerque Astronomical Society.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自从二十年前发生事故以来,光频率梳已成为精确测量中最重要的工具之一。它们用于痕量气体光谱法,以检测化学危害和疾病相关的生物标志物,在寻找地球样系外行星的恒星光谱中以及光原子钟的关键成分。尽管它们的使用现在无处不在,但光学频率梳子主要局限于专门的光学实验室。但是,这正在改变。最近,使用芯片尺度的微林腔和非线性KERR效应实现了光频梳。这些“微型群岛”的承诺在于可能用梳子片平台替换致力于精确测量的研究实验室,该平台可以执行远离光学实验室的精确测量。与许多精度测量仪器一样,微栓精度受到材料热噪声的限制,这一限制是由较小体积的缩影所委托。 Drake和她的团队基于最近的工作,研究物质噪声如何影响梳子的精度,将根据新型的腔几何形状和梳子操作开发一种减少微重噪声的技术。将材料的热力学从梳子光的特性中解耦是使用微型团作为最先进的精确测量仪器的重要里程碑。在其微波和光学频率中,具有降低热相噪声的微重栓系统。虽然物质的热力学通常是充分了解的,但热噪声和非线性光学元件的相交在很大程度上仍然是出乎意料的。在微型群中,谐振材料中的热波动转换为梳光的性质(微波重复速率或光学梳子模式)上的噪声高度取决于梳状状态的细节,包括拉曼自我频率移位和分散波的存在。该项目通过引入改变这种关系的几何形状和技术来增强微孔子频率梳子中热和频率/相位噪声之间的联系的理论和实验研究,并可以用来产生超低相位噪声信号。该研究的总体目标是在低成本的室温系统中生成低相位噪声信号(主要是微波炉,也可能是光学的),具有未来光子整合的潜力。 PI还将开发一个针对地区STEM教育者的夏季学院,专注于基于光学的项目的设计和构建(光学技术发明者和制造商学院,Optima)。与会者将学习光学和光学设计的原理,并鼓励创建可以用作课堂教学材料的光学项目。从长远来看,PI计划通过与诸如本地制造商和Albuquerque天文学社会等组织合作,将该计划扩展到更广泛的Albuquerque社区。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准来通过评估来通过评估来支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tara Drake其他文献
Tara Drake的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
超低温钠离子电池CEI膜原位构筑、界面输运机制及电化学性能研究
- 批准号:52302260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超低微合金化高强韧铝硅铜合金的强韧化机制研究
- 批准号:52365049
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超低温水系卤素-氢气二次电池研究
- 批准号:22309172
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
缺陷型MOFs超低剂量消耗过硫酸盐催化降解医院污水中的典型抗生素性能及机理研究
- 批准号:52370025
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
面向IoT的高性能超低功耗唤醒无线电弹性设计研究
- 批准号:62364009
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
相似海外基金
Innovative Drag Reduction Technology using 3-D Effect of Gas-Liquid Two-Phase Turbulent Boundary Layers
利用气液两相湍流边界层3D效应的创新减阻技术
- 批准号:
21J11854 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Ultralow phase noise Crystal Oscillators and Atomic Clocks
超低相位噪声晶体振荡器和原子钟
- 批准号:
2276627 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Studentship
Ultralow phase noise Microwave Oscillators and Atomic Clocks
超低相位噪声微波振荡器和原子钟
- 批准号:
2276640 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Studentship
Development of liquid state stationary phase for ultralow-temperature HPLC
超低温高效液相色谱液态固定相的研制
- 批准号:
18K19097 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Electronic nematic phase and unconventional superconductivity in strong correlated systems
强相关系统中的电子向列相和非常规超导性
- 批准号:
18J22138 - 财政年份:2018
- 资助金额:
$ 55万 - 项目类别:
Grant-in-Aid for JSPS Fellows