Acquiring Airborne Lidar data to study hydrologic, geomorphologic, and geochemical processes at three Critical Zone Observatories (CZO)
获取机载激光雷达数据以研究三个关键区域观测站 (CZO) 的水文、地貌和地球化学过程
基本信息
- 批准号:0922307
- 负责人:
- 金额:$ 93.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-15 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The Earth?s ?critical zone? is where water, atmosphere, ecosystems and soils interact on a geomorphic and geologic template, and extends from bedrock to the atmospheric boundary layer. Process understanding of erosion, weathering, soil formation, water movement and nutrient transport in the critical zone depends in large part on new observations, coupled with models that can take advantage of those new data. In particular, accurate, high‐resolution images of the land surface and vegetation canopy, and the structure in between, have the ability to transform our ability to describe and model those processes, and to predict how changes in climate and landcover will perturb water cycles and critical‐zone processes linked to water. Airborne LiDAR (Light Detection and Ranging) is proving to be a transformational technology that can determine the three‐dimensional structure of the critical zone, and thus enable this process research. LiDAR flights will measure canopy during leaf on/leaf off conditions, snow distribution and other physical features of the land surface at the three NSF‐supported Critical Zone Observatories (CZOs) and other three key sites. Physiographic data will be used to derive the LiDAR products, such as a high‐resolution digital elevation model, tree heights, tree diameter at breast height, leaf area index, crown cover, and snow depth. Ground‐truth data will be collected to validate and calibrate the LiDAR derived products. Advanced, state‐of‐the‐art processing will be carried out to assure that products are accurate. Intellectual merit. The resulting information will be used for hypothesis‐driven research across these sites. High‐resolution topographic data will characterize landscapes and enable testing hypotheses about the geomorphic processes that have generated these landscapes. The data will enable examining the role of aspect in geomorphic and hydrologic behavior, and the feedbacks between slope, soil moisture, weathering, soil formation and vegetation. Hydrologic simulations using emerging, physics‐based models will also be carried out, using the high‐spatial‐resolution topographic and canopy products from LiDAR. High‐resolution estimates of spatial patterns of snow depth will provide an unprecedented ground‐truth data set for modeling the physiographic controls on snow accumulation and melt. LiDAR scenes will contribute to estimating vegetation structure, which will then be used for parameter estimation in coupled hydro‐ecologic model analysis and in scaling of evapotranspiration and carbon flux. LiDAR‐based estimates of micro‐topography, the patterns of which give rise to ?hot? and ?cold? spots of soil biogeochemical cycling generated by preferential flow of nutrient‐rich litter leachate into mineral soils, will help guide sampling of litter and soil nutrient concentrations along gradients of water and biological availability. By quantifying functional controls on rates of erosion and weathering, the LIDAR data will contribute to improved understanding of how (and why) sediment and solutes move across (and through) the landscape. Broader impacts: There are two main, direct broader impacts of this project. First, making LiDAR data available for the three CZOs will enhance their potential and use as community platforms for research. The goal of CZOs is to build a network to advance interdisciplinary studies of Earth surface processes as well as foster collaboration among scientists and engineers from different disciplines. However, existing spatial data cannot meet the research needs of the CZO teams because of being incomplete, outdated and of insufficient spatial resolution and temporal scale. A second broader impact will be to make LiDAR products easily understood and widely used by researchers working at CZOs and similar study areas, building on the community nature of CZO data and resources, and well‐developed plans to share those resources and disseminate CZO products.
该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。地球吗?年代?临界区?是水、大气、生态系统和土壤在地貌和地质模板上相互作用的地方,并从基岩延伸到大气边界层。对关键地带的侵蚀、风化、土壤形成、水分运动和养分输送过程的理解,在很大程度上取决于新的观测结果,以及可以利用这些新数据的模型。特别是精确,高&;#8208;陆地表面和植被冠层的分辨率图像,以及两者之间的结构,有能力改变我们描述和模拟这些过程的能力,并预测气候和土地覆盖的变化将如何扰乱水循环和临界温度。区域过程与水有关。机载激光雷达(光探测和测距)被证明是一种变革性的技术,可以确定三个目标。关键区域的尺寸结构,从而使本工艺研究成为可能。激光雷达飞行将在三个NSF&;#8208;支持关键区域天文台(czo)和其他三个关键站点。地理数据将用于导出LiDAR产品,例如high&;#8208;分辨率数字高程模型,树高,树胸径,叶面积指数,树冠覆盖和雪深。Ground& # 8208;收集真实数据以验证和校准激光雷达衍生产品。先进,state& # 8208; of& # 8208; amp的;# 8208;将进行美术加工,以确保产品的准确性。知识价值。结果信息将用于假设&;#8208;推动这些网站的研究。High& # 8208;高分辨率的地形数据将描绘景观特征,并使测试关于产生这些景观的地貌过程的假设成为可能。这些数据将有助于研究地形在地貌和水文行为中的作用,以及坡度、土壤水分、风化、土壤形成和植被之间的反馈。水文模拟使用新兴,物理&;#8208;基于模型也将进行,使用high&;#8208;spatial‐;分辨率地形和冠层产品。High& # 8208;对雪深空间格局的分辨率估计将提供一个前所未有的地面&;#8208;模拟积雪和融雪的地理控制的真值数据集。激光雷达场景将有助于估计植被结构,然后将其用于耦合水文[amp;#8208;生态模型分析及蒸散和碳通量的标度。LiDAR& # 8208;基于micro&;#8208;地形,其模式产生了?热?和冷?养分优先流动产生的土壤生物地球化学循环点&;#8208;丰富的凋落物渗滤液进入矿物土壤,将有助于指导沿水和生物有效性梯度的凋落物和土壤养分浓度采样。通过量化对侵蚀和风化速率的功能控制,激光雷达数据将有助于提高对沉积物和溶质如何(以及为什么)在景观中移动的理解。更广泛的影响:本项目有两个主要的、直接的更广泛的影响。首先,为三个czo提供激光雷达数据将增强它们的潜力,并将其用作社区研究平台。czo的目标是建立一个网络来推进地球表面过程的跨学科研究,并促进来自不同学科的科学家和工程师之间的合作。然而,现有的空间数据不完整、过时,空间分辨率和时间尺度不够,无法满足CZO团队的研究需求。第二个更广泛的影响将是使激光雷达产品更容易被CZO和类似研究领域的研究人员理解和广泛使用,建立在CZO数据和资源的社区性质之上。制定了共享这些资源和传播CZO产品的计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qinghua Guo其他文献
Block Sparse Bayesian Learning Based Joint User Activity Detection and Channel Estimation for Grant-Free NOMA Systems
基于块稀疏贝叶斯学习的无资助 NOMA 系统的联合用户活动检测和信道估计
- DOI:
10.1109/tvt.2018.2859806 - 发表时间:
2018-07 - 期刊:
- 影响因子:6.8
- 作者:
Yuanyuan Zhang;Qinghua Guo;Zhongyong Wang;Jiangtao Xi;Nan Wu - 通讯作者:
Nan Wu
Detailed deposition characteristics around burner plane in an impinging entrained-flow coal gasifier
冲击式气流床煤气化炉中燃烧器平面周围的详细沉积特征
- DOI:
10.1016/j.ces.2019.01.016 - 发表时间:
2019-04 - 期刊:
- 影响因子:4.7
- 作者:
Zhicun Xue;Qinghua Guo;Yan Gong;Xiaoxiang Wu;Fuchen Wang;Guangsuo Yu - 通讯作者:
Guangsuo Yu
Opposed multi-burner gasification technology: Recent process of fundamental research and industrial application
多燃烧器对置气化技术:基础研究与工业应用的最新进展
- DOI:
10.1016/j.cjche.2021.07.007 - 发表时间:
2021-07 - 期刊:
- 影响因子:3.8
- 作者:
Zhongjie Shen;Fuchen Wang;Jianliang Xu;Qinghua Guo;Guangsuo Yu;Hui Zhao;Weifeng Li;Yan Gong;Haifeng Liu;Haifeng Lu - 通讯作者:
Haifeng Lu
A novel entropy-based method to quantify forest canopy structural complexity from multiplatform lidar point clouds
一种基于熵的新型方法,用于从多平台激光雷达点云量化森林冠层结构复杂性
- DOI:
10.1016/j.rse.2022.113280 - 发表时间:
2022 - 期刊:
- 影响因子:13.5
- 作者:
Xiaoqiang Liu;Qin Ma;Xiaoyong Wu;Tianyu Hu;Zhonghua Liu;Lingli Liu;Qinghua Guo;Yanjun Su - 通讯作者:
Yanjun Su
Enhanced synchronization-inspired clustering for high-dimensional data
针对高维数据的增强型同步启发聚类
- DOI:
10.1007/s40747-020-00191-y - 发表时间:
2020-09 - 期刊:
- 影响因子:5.8
- 作者:
Lei Chen;Qinghua Guo;Zhaohua Liu;Shiwen Zhang;Hongqiang Zhang - 通讯作者:
Hongqiang Zhang
Qinghua Guo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qinghua Guo', 18)}}的其他基金
Doctoral Dissertation Research: The Development and Integration of Spatial Analyses for Search and Rescue Operations in Yosemite National Park
博士论文研究:优胜美地国家公园搜救行动空间分析的开发和集成
- 批准号:
1031914 - 财政年份:2010
- 资助金额:
$ 93.55万 - 项目类别:
Standard Grant
ModelEco: Integrated Software for Species Distribution Analysis and Modeling
ModelEco:物种分布分析和建模集成软件
- 批准号:
0742986 - 财政年份:2008
- 资助金额:
$ 93.55万 - 项目类别:
Standard Grant
相似国自然基金
机载探地雷达(Airborne-GPR)探测机理研究
- 批准号:41074076
- 批准年份:2010
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
Operational research of airborne topo-bathymetric lidar
机载地形测深激光雷达业务研究
- 批准号:
469726-2014 - 财政年份:2019
- 资助金额:
$ 93.55万 - 项目类别:
Applied Research and Development Grants - Level 2
Development of a three dimensional structure analysis method of deciduous broadleaf forest using airborne LiDAR data
利用机载激光雷达数据开发落叶阔叶林三维结构分析方法
- 批准号:
19K06123 - 财政年份:2019
- 资助金额:
$ 93.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RAPID: Airborne LiDAR and Hyperspectral Observations to Support Ecological Characterization of Wildfire Affected Areas in Partnership with BB-FLUX
RAPID:与 BB-FLUX 合作利用机载激光雷达和高光谱观测支持野火受影响地区的生态特征描述
- 批准号:
1842139 - 财政年份:2018
- 资助金额:
$ 93.55万 - 项目类别:
Standard Grant
Peatland-wildfire interactions in the Canadian Boreal Plains: analyzing drivers and spatial variation of burn depth and carbon loss using airborne lidar and in situ methods
加拿大北方平原泥炭地与野火的相互作用:使用机载激光雷达和现场方法分析燃烧深度和碳损失的驱动因素和空间变化
- 批准号:
528464-2018 - 财政年份:2018
- 资助金额:
$ 93.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Operational research of airborne topo-bathymetric lidar
机载地形测深激光雷达业务研究
- 批准号:
469726-2014 - 财政年份:2017
- 资助金额:
$ 93.55万 - 项目类别:
Applied Research and Development Grants - Level 2
Tomographic approaches for airborne lidar bathymetry data processing
机载激光雷达测深数据处理的层析成像方法
- 批准号:
390023295 - 财政年份:2017
- 资助金额:
$ 93.55万 - 项目类别:
Research Grants
Operational research of airborne topo-bathymetric lidar
机载地形测深激光雷达业务研究
- 批准号:
469726-2014 - 财政年份:2016
- 资助金额:
$ 93.55万 - 项目类别:
Applied Research and Development Grants - Level 2
Airborne lidar for volcano gas distribution measurement
用于火山气体分布测量的机载激光雷达
- 批准号:
16K12850 - 财政年份:2016
- 资助金额:
$ 93.55万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Contribution of clouds to radiative diabatic heating and cooling, from synergy of airborne lidar, radar, and imager observations
机载激光雷达、雷达和成像仪观测的协同作用,云对辐射非绝热加热和冷却的贡献
- 批准号:
316834395 - 财政年份:2016
- 资助金额:
$ 93.55万 - 项目类别:
Infrastructure Priority Programmes
Operational research of airborne topo-bathymetric lidar
机载地形测深激光雷达业务研究
- 批准号:
469726-2014 - 财政年份:2015
- 资助金额:
$ 93.55万 - 项目类别:
Applied Research and Development Grants - Level 2