An Engineering Control System Paradigm for Quantitative Understanding of Hemostasis

用于定量理解止血的工程控制系统范例

基本信息

  • 批准号:
    0925202
  • 负责人:
  • 金额:
    $ 39.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-09-01 至 2014-08-31
  • 项目状态:
    已结题

项目摘要

0925202OgunnaikeThe primary goal of this research is to develop and validate an engineering control system paradigm for obtaining quantitative insight into how multiple interdependent hemostatic processes interact to control blood loss safely and effectively following vessel injury. A novel quantitative modular modeling and analysis technique for organizing the mechanistic details of this biological process will be developed and validated experimentally. The resulting mathematical model will be used to elucidate mechanisms of hemostatic disorders from a control system perspective, and to generate testable hypotheses about effective treatment. The specific question to be answered is: Quantitatively, how do the various components of the entire hemostatic process work together to produce fast, effective and stable responses to vascular injury under normal conditions? The specific tasks that will be performed are: Task 1: Model Development. Develop a detailed control system block diagram representation of the components of hemostasis, derive mathematical models for each component and integrate into a holistic, comprehensive dynamic model. Task 2: Model Validation (Experimental). In a continuing collaboration the PIs will validate the predictions of each principal module of the overall model against independent experimental data. Task 3: Model Analysis and Hypothesis Generation. Computation studies and theoretical analyses of the model will be carried out; derivation of quantitative insight into pathological disorders from a control system perspective; and generation of hypothesis regarding effective treatment regimens in terms of optimal compensation for component malfunction responsible for the identified disorder. Intellectual Merit Systemic changes in life sciences research have created opportunities for mathematical modeling to play a major role in developing quantitative and predictive understanding of complex biological phenomena. With ever improving experimental capabilities facilitating the acquisition of more refined data on the most intricate cellular and molecular mechanisms, increasing computational power has steadily steered mathematical modeling in systems biology towards adopting ?bigger and more complex? representations of these complex systems. For the specific problem of hemostasis there are currently no holistic quantitative models of the complete hemostasis process perhaps because many of the constituent components are quite complex in their own right, and a ?standard? attempt at developing a holistic model is not likely to be very useful. By recognizing that at the heart of hemostasis is an automatic biological control system, this research aims to deploy concepts from engineering control systems to develop a comprehensive hemostatic process model that achieves fidelity without sacrificing analytical tractability. The PIs envision two kinds of primary impact for this research: (i) Technical: an improved quantitative understanding of how this biological process is regulated under normal circumstances, and how the characteristics of the whole emerge from the connection of the individual component parts, with implications for clinical practice in the form of more precise treatment of hemophilia and thrombophilia; (ii) Methodological: demonstrating how to achieve high-fidelity and analytical tractability simultaneously in models of extremely complex biological phenomena. Broader Impact At the heart of the evolving undergraduate training program is the issue of how to integrate biology within the classical chemical engineering curriculum. This research addresses theoretically and with experimental validation, issues that are perfect for introducing students to biological control systems, and how to employ such simulation tools as SIMULINK for modeling and understanding such systems. The results of this research will be integrated into the teaching curricula and widely disseminated through publications and presentations to other educators and researchers. In addition, the PI, as a minority himself, is committed to recruiting under-represented groups into the chemical engineering discipline in general and systems biology research in particular, and should be able to attract minority students to participate in this effort.
本研究的主要目标是开发和验证一个工程控制系统范例,以定量了解多个相互依存的止血过程如何相互作用,以安全有效地控制血管损伤后的失血。一种新的定量模块化建模和分析技术,用于组织这一生物过程的机制细节,将被开发和实验验证。由此产生的数学模型将用于从控制系统的角度阐明止血障碍的机制,并产生关于有效治疗的可测试假设。具体要回答的问题是:在定量上,在正常情况下,整个止血过程的各个组成部分如何共同作用,对血管损伤产生快速、有效和稳定的反应?将要执行的具体任务是:任务1:模型开发。制定一个详细的控制系统框图,表示止血的组成部分,推导每个组成部分的数学模型,并整合成一个整体的,全面的动态模型。任务2:模型验证(实验)。在持续的合作中,pi将根据独立的实验数据验证整个模型的每个主要模块的预测。任务3:模型分析和假设生成。对模型进行计算研究和理论分析;从控制系统的角度对病理障碍进行定量分析;并产生关于有效治疗方案的假设,即对导致已识别疾病的部件故障进行最佳补偿。生命科学研究的系统性变化为数学建模在发展对复杂生物现象的定量和预测性理解方面发挥重要作用创造了机会。随着实验能力的不断提高,有助于在最复杂的细胞和分子机制上获得更精确的数据,计算能力的增强稳步地引导系统生物学的数学建模朝着采用?更大更复杂?这些复杂系统的表示。对于止血的具体问题,目前还没有完整的止血过程的整体定量模型,这可能是因为许多组成成分本身就相当复杂,并且没有一个标准的止血方法。试图建立一个整体模型不太可能是非常有用的。认识到止血的核心是一个自动的生物控制系统,本研究旨在利用工程控制系统的概念来开发一个全面的止血过程模型,在不牺牲分析可追溯性的情况下实现保真度。pi设想了这项研究的两种主要影响:(i)技术方面:改进了对正常情况下如何调节这一生物过程的定量理解,以及如何从单个组成部分的连接中产生整体特征,以更精确地治疗血友病和血栓病的形式对临床实践产生影响;方法学:展示如何在极其复杂的生物现象模型中同时实现高保真度和分析可追溯性。不断发展的本科培训计划的核心问题是如何将生物学整合到经典的化学工程课程中。本研究解决了理论和实验验证的问题,这些问题非常适合向学生介绍生物控制系统,以及如何使用像SIMULINK这样的仿真工具来建模和理解这些系统。这项研究的结果将纳入教学课程,并通过出版物和报告向其他教育工作者和研究人员广泛传播。此外,PI本身作为少数民族,致力于招募代表性不足的群体进入化学工程学科,特别是系统生物学研究,并且应该能够吸引少数民族学生参与这项工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Babatunde Ogunnaike其他文献

IMPACT OF AREA DEPRIVATION AND OBESITY STATUS ON DEVELOPMENT OF SYSTEMIC HYPERTENSION IN YOUTH
  • DOI:
    10.1016/s0735-1097(22)02401-9
  • 发表时间:
    2022-03-08
  • 期刊:
  • 影响因子:
  • 作者:
    Carissa Marrie Baker-Smith;Robert Akins;Cathy Wu;Babatunde Ogunnaike;Bethany Wolf;Mary Joan McDuffie;Erin Lynch
  • 通讯作者:
    Erin Lynch

Babatunde Ogunnaike的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Babatunde Ogunnaike', 18)}}的其他基金

GOALI: Multi-scale Modeling and Advanced Control of Glycosylation in Monoclonal Antibody Production
GOALI:单克隆抗体生产中糖基化的多尺度建模和高级控制
  • 批准号:
    1034213
  • 财政年份:
    2010
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Continuing Grant
GOALI: A Framework For Integrated Product Design and Control in Polymer Nanocomposites
GOALI:聚合物纳米复合材料集成产品设计和控制框架
  • 批准号:
    0652172
  • 财政年份:
    2007
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Standard Grant

相似国自然基金

Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:

相似海外基金

Control Systems Engineering to Address the Problem of Weight Loss Maintenance: A System Identification Experiment to Model Behavioral & Psychosocial Factors Measured by Ecological Momentary Assessment
解决减肥维持问题的控制系统工程:行为建模的系统识别实验
  • 批准号:
    10749979
  • 财政年份:
    2023
  • 资助金额:
    $ 39.59万
  • 项目类别:
First-Order Method-Based Optimization for Dynamical System Control and Its Engineering Applications
基于一阶方法的动力系统控制优化及其工程应用
  • 批准号:
    22K14279
  • 财政年份:
    2022
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BABE: Battery management control system for Advanced Battery Engineering
BABE:先进电池工程的电池管理控制系统
  • 批准号:
    133367
  • 财政年份:
    2018
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Feasibility Studies
Construction of an Adaptive Smart Learning Support System Based on Control Engineering Approach
基于控制工程方法的自适应智能学习支持系统的构建
  • 批准号:
    16H02921
  • 财政年份:
    2016
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of skill evaluation and skill acquisition support system by using control engineering approaches
利用控制工程方法开发技能评估和技能获取支持系统
  • 批准号:
    16K12760
  • 财政年份:
    2016
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Engineering a Minimal Drive System for Vector Control in Drosophila melanogaster
设计用于果蝇矢量控制的最小驱动系统
  • 批准号:
    1655064
  • 财政年份:
    2015
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Studentship
Basic Research of a comprehensive metabolic control system, the control engineering of biological clock, connecting the entire hierarchy from the cell to the individual
综合代谢控制系统的基础研究,生物钟的控制工程,连接从细胞到个体的整个层次
  • 批准号:
    25712029
  • 财政年份:
    2013
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
A Magnetic Levitation System for Control Engineering Education
用于控制工程教育的磁悬浮系统
  • 批准号:
    0536236
  • 财政年份:
    2006
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Standard Grant
Development of a Process Control Breadboard System to Attract and Retain Engineering Students
开发过程控制试验板系统以吸引和留住工程专业的学生
  • 批准号:
    0234671
  • 财政年份:
    2003
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Standard Grant
DEVELOPMENT OF INFORMATION SYSTEM TGHEORY VIA POLYNOMIAL MATRIX ALGEBRA : A CONTROL ENGINEERING APPROACH
通过多项式矩阵代数开发信息系统理论:一种控制工程方法
  • 批准号:
    12650447
  • 财政年份:
    2000
  • 资助金额:
    $ 39.59万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了