Self-Tuned Critical Networks
自调整关键网络
基本信息
- 批准号:0928723
- 负责人:
- 金额:$ 59.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The vertebrate nervous system consists of neurons that interact with each other through connections, called synapses. Changes in the strengths of the synaptic connections, due to the activity patterns of the neurons, are thought to underlie the plasticity of the brain. Furthermore, it is widely recognized that a delicate balancing of synaptic connection strength is essential to nervous system function. Unhindered connections would cause the brain to cease to operate, in a cacophony of epileptic-like feedback oscillations; if suppression dominated, stimuli would be unable to elicit a response from an apathetic, flatline brain. At the delicate interface between these two useless modes of behavior lies a regime in which groups of neurons are on the verge of oscillation, and may rapidly start or stop responding according to external influences.This project will develop a theory of self-poising, in which local activity-dependent rules for balancing synaptic response result in many groups of neurons poised at the edge of this dynamical instability. The theory will develop the interaction between self-poising and microstructure, in which local neuronal microcircuits are threaded together into global states, and the interaction with macrostructure, in which different self-poised areas communicate and interact. New theory resulting from this project will aid understanding of global activity patterns in the brain, such as Electroencephalography (EEG) or Electrocorticography (ECoG). The proposed research will contribute directly to education and outreach programs for high school students, undergraduate and graduate students, and postdoctoral researchers. These activities will be coordinated through ongoing programs at Rockefeller University. Promoting the involvement of minority undergraduate and graduate students in research environments will be a priority of this program. Results from the project will be incorporated into novel graduate courses on network theory and advanced modeling for biology students.
脊椎动物的神经系统由神经元组成,这些神经元通过称为突触的连接相互作用。由于神经元的活动模式,突触连接强度的变化被认为是大脑可塑性的基础。此外,人们广泛认识到,突触连接强度的微妙平衡对神经系统功能至关重要。不受阻碍的连接会导致大脑停止运作,出现类似癫痫的反馈振荡;如果抑制占主导地位,刺激将无法从冷漠、平坦的大脑中引发反应。在这两种无用的行为模式之间的微妙界面处,存在着一种机制,在这种机制中,神经元组处于振荡的边缘,并且可能根据外部影响迅速开始或停止响应。本项目将发展一种自平衡理论,其中用于平衡突触响应的局部活动依赖规则导致许多神经元组处于这种动态不稳定的边缘。该理论将发展自平衡和微观结构之间的相互作用,其中局部神经元微电路被连接在一起形成全局状态,以及与宏观结构的相互作用,其中不同的自平衡区域进行通信和相互作用。该项目产生的新理论将有助于理解大脑中的全球活动模式,如脑电图(EEG)或皮质电图(ECoG)。拟议中的研究将直接有助于高中生,本科生和研究生以及博士后研究人员的教育和推广计划。这些活动将通过洛克菲勒大学正在进行的项目进行协调。促进少数民族本科生和研究生参与研究环境将是该计划的优先事项。该项目的成果将被纳入生物学学生的网络理论和高级建模的新研究生课程。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marcelo Magnasco其他文献
High performance computing environment for multidimensional image analysis
- DOI:
10.1186/1471-2121-8-s1-s9 - 发表时间:
2007-07-10 - 期刊:
- 影响因子:2.700
- 作者:
A Ravishankar Rao;Guillermo A Cecchi;Marcelo Magnasco - 通讯作者:
Marcelo Magnasco
Marcelo Magnasco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marcelo Magnasco', 18)}}的其他基金
Physics of Living Systems at StatPhys27
StatPhys27 的生命系统物理学
- 批准号:
1934879 - 财政年份:2019
- 资助金额:
$ 59.91万 - 项目类别:
Standard Grant
Collaborative Research: Opening a Quantitative Window into the Mind and Communication of Dolphins
合作研究:打开一扇了解海豚思维和交流的定量窗口
- 批准号:
1607280 - 财政年份:2016
- 资助金额:
$ 59.91万 - 项目类别:
Continuing Grant
Collaborative Research: Analysis of the Mammalian Olfactory Code
合作研究:哺乳动物嗅觉密码分析
- 批准号:
1555950 - 财政年份:2015
- 资助金额:
$ 59.91万 - 项目类别:
Continuing Grant
Loops Within Loops: Optimal Distribution Networks and Leaf Vein Architecture
环中环:最优分配网络和叶脉架构
- 批准号:
1058899 - 财政年份:2011
- 资助金额:
$ 59.91万 - 项目类别:
Standard Grant
相似海外基金
Magnetorheological Elastomer Based Tuned Mass Damper
基于磁流变弹性体的调谐质量阻尼器
- 批准号:
DP240101050 - 财政年份:2024
- 资助金额:
$ 59.91万 - 项目类别:
Discovery Projects
I-Corps: Translation Potential of Portable Tuned Mass Dampers to Reduce Vibration Serviceability Issues in Architectural Structures
I-Corps:便携式调谐质量阻尼器减少建筑结构振动适用性问题的转化潜力
- 批准号:
2407141 - 财政年份:2024
- 资助金额:
$ 59.91万 - 项目类别:
Standard Grant
CAREER: Electrically tuned topological phase transitions in moire heterostructures
职业:莫尔异质结构中的电调谐拓扑相变
- 批准号:
2237050 - 财政年份:2023
- 资助金额:
$ 59.91万 - 项目类别:
Continuing Grant
CAREER: Realizing Alternative Cements with Chemical Kinetics: Tuned Mechanical–Chemical Properties of Cementitious Magnesium Silicate Hydrates by Multi-Scale Synthetic Control
职业:利用化学动力学实现替代水泥:通过多尺度合成控制调整胶凝硅酸镁水合物的机械和化学性能
- 批准号:
2342381 - 财政年份:2023
- 资助金额:
$ 59.91万 - 项目类别:
Continuing Grant
First-in-Human Imaging of Innate Immunity Activation with a Redox-Tuned PET Reporter
使用氧化还原调谐 PET 报告基因首次对人体进行先天免疫激活成像
- 批准号:
10577531 - 财政年份:2023
- 资助金额:
$ 59.91万 - 项目类别:
Antibacterial wound dressings activated with tuned nanocomposites through the electrophoretic deposition techniques
通过电泳沉积技术用调谐纳米复合材料激活抗菌伤口敷料
- 批准号:
10042853 - 财政年份:2022
- 资助金额:
$ 59.91万 - 项目类别:
Grant for R&D
Synthesis and chemical biology of inositol phosphate analogues with tuned physicochemical properties
具有调整理化性质的肌醇磷酸类似物的合成和化学生物学
- 批准号:
RGPIN-2020-04908 - 财政年份:2022
- 资助金额:
$ 59.91万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: PIC: Slow Wave Enhanced Electrooptically Tuned Michelson Interferometer Biosensor for On-Chip Dual Polarization Interferometry
合作研究:PIC:用于片上双偏振干涉测量的慢波增强型电光调谐迈克尔逊干涉仪生物传感器
- 批准号:
2210722 - 财政年份:2022
- 资助金额:
$ 59.91万 - 项目类别:
Standard Grant
Collaborative Research: PIC: Slow Wave Enhanced Electrooptically Tuned Michelson Interferometer Biosensor for On-Chip Dual Polarization Interferometry
合作研究:PIC:用于片上双偏振干涉测量的慢波增强型电光调谐迈克尔逊干涉仪生物传感器
- 批准号:
2210707 - 财政年份:2022
- 资助金额:
$ 59.91万 - 项目类别:
Standard Grant
Enhancing Laser Lithotripsy via Nanoparticle Fine-Tuned NIR absorption
通过纳米颗粒微调近红外吸收增强激光碎石术
- 批准号:
10707420 - 财政年份:2022
- 资助金额:
$ 59.91万 - 项目类别: