Self-Organized Structures from Nanoparticles and Proteins
纳米颗粒和蛋白质的自组织结构
基本信息
- 批准号:0932823
- 负责人:
- 金额:$ 30万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0932823Kotov"This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5)."Intellectual Merit:Proteins, DNAs and viruses have the capability to self-assemble into ordered morphologies due to interfacial interactions of these basic biological building blocks. Water-soluble inorganic nanoparticles (NPs) have similar dimensions, chemistries on their surface, and, hence, analogous inter-NP interactions. Indeed, they also have the ability to self-organize. Here, we will explore a hypothesis that NPs and proteins can form hybrid assemblies with new morphologies and topologies, which probably have similarities with those made by proteins and those made by NPs. Besides establishing profound fundamental analogy between two principally different classes of macromolecules, the motivation for this work comes from the need to find methods to make complex NP structures in many instances mimicking the biological counterparts. One characteristic example for this need is the replication of the photosynthetic center of plants and bacteria for solar energy conversion. As well, it will also be interesting to design media-responsive dynamic NP assemblies that can serve as photonic systems, sensors, and micro/nano scale gating systems. Specifically, in this project, the combination of CdTe NPs and Cytochrome C (Cyt C) will be used. Both of the components have strong dipole moments and can potentially self-assemble due to dipole-dipole interaction. The products can be nanowires (NWs), nanosheets (NSs), nanohelixes (NHs) and possibly other superstructures. Once the assemblies are well-characterized for the incorporation of biomolecules, the conformational change of the integrated proteins will be used to tune the overall morphology. The study will also focus on the experimental modulation of the morphological structures of the bio-nanocomposites based upon temperature change and pH effect as two primary control parameters. Conditions leading to reversible transformations of the NP-protein nanocomposite from 1D to 2D and 3D structures will be tested.Broader Impact:The research effort will be complemented by the strong outreach component. The project will provide an energetic and stimulating environment for students with introduction to the toughest problems of chemical engineering and interfacial science. The educational impact of the proposal will be enhanced by the possibility for students to interact with industrial researchers in the development of new applications of nanotechnology. Due to the relative simplicity of materials design techniques as well as chemical safety of the individual components of the composites to be used in the proposal, we plan to involve summer high school students from Michigan thereby disseminating the knowledge on nanotechnology and expanding the breadth of educational impact of the research. University of Michigan is well known for its large-scale diversity effort and recruitment of highly qualified minority students at all levels. This proposal integrates these efforts through campus- and state-wide programs and will have both ethnic and gender minorities immersed in the project. Different protein structure similar to size of NPs and DNA molecules in various lengths will be also employed for similar studies. The assemblies of inorganic materials with DNA will be similarly exploited and characterized for the mechanism of reversible morphologies. By improving the understanding for the bio-nanocomposite formation and further alteration of advanced assemblies will offer the opportunity to design new architectures with higher control compared to the current methods available. Achieving ordered structures by this method in a reversible fashion will also open a new route for designing materials for specific electronic, sensing and diagnostic application.
0932823 Kotov“该奖项是根据2009年美国复苏和再投资法案(公法111-5)资助的。智力优势:蛋白质,DNA和病毒具有自组装成有序形态的能力,这是由于这些基本生物构建块的界面相互作用。水溶性无机纳米粒子(NP)具有相似的尺寸,其表面上的化学性质,因此具有类似的NP间相互作用。 事实上,他们也有自我组织的能力。 在这里,我们将探讨一个假设,即纳米粒子和蛋白质可以形成新的形态和拓扑结构的混合组装,这可能与蛋白质和纳米粒子的相似之处。 除了在两类主要不同的大分子之间建立深刻的基本相似性之外,这项工作的动机还来自于需要找到在许多情况下模仿生物学对应物的复杂NP结构的方法。 这种需要的一个典型例子是复制植物和细菌的光合作用中心以进行太阳能转换。 同样,设计可用作光子系统、传感器和微/纳米尺度选通系统的介质响应动态NP组件也将是有趣的。具体而言,在该项目中,将使用CdTe NPs和细胞色素C(Cyt C)的组合。 这两种成分都具有很强的偶极矩,并且由于偶极-偶极相互作用,可以潜在地自组装。 产物可以是纳米线(NW)、纳米片(NS)、纳米螺旋(NH)和可能的其他超结构。一旦组装体被很好地表征为生物分子的掺入,整合的蛋白质的构象变化将用于调整整体形态。 该研究还将侧重于基于温度变化和pH效应作为两个主要控制参数的生物纳米复合材料的形态结构的实验调制。将测试导致NP-蛋白质纳米复合材料从1D到2D和3D结构的可逆转化的条件。更广泛的影响:研究工作将得到强有力的推广组成部分的补充。该项目将为学生提供一个充满活力和刺激的环境,介绍化学工程和界面科学的最棘手的问题。该提案的教育影响将通过学生与工业研究人员在开发纳米技术新应用方面进行互动的可能性得到加强。 由于材料设计技术的相对简单性以及复合材料的单个组分的化学安全性,我们计划让密歇根州的暑期高中生参与进来,从而传播纳米技术知识并扩大研究的教育影响范围。 密歇根大学以其大规模的多样性努力和在各级招收高素质的少数民族学生而闻名。 该提案通过校园和全州范围的计划整合了这些努力,并将使少数民族和性别少数群体沉浸在该项目中。类似的研究还将采用与纳米颗粒大小相似的不同蛋白质结构和不同长度的DNA分子。无机材料与DNA的组装体将被类似地利用并表征可逆形态的机制。通过提高对生物纳米复合材料形成的理解和进一步改变先进组件,与现有方法相比,将有机会设计具有更高控制的新架构。通过这种方法以可逆的方式实现有序结构也将为设计用于特定电子,传感和诊断应用的材料开辟新的途径。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Kotov其他文献
Nanocomposites are stretched thin
纳米复合材料被拉伸变薄
- DOI:
10.1038/nmat1224 - 发表时间:
2004-10-01 - 期刊:
- 影响因子:38.500
- 作者:
Nicholas Kotov - 通讯作者:
Nicholas Kotov
Complexity, disorder, and functionality of nanoscale materials
- DOI:
10.1557/s43577-024-00698-6 - 发表时间:
2024-04-12 - 期刊:
- 影响因子:4.900
- 作者:
Xiaoming Mao;Nicholas Kotov - 通讯作者:
Nicholas Kotov
Chiral Kirigami for Bend-Tolerant Real-Time Recon�gurable Holograms
用于耐弯曲实时可重构全息图的手性剪纸
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Won Jin;Choi;Lawrence Livermore;National Laboratory;Sang Hyun Lee;Nicholas Kotov - 通讯作者:
Nicholas Kotov
Structural characterization of PSMa1 functional amyloids in <em>Staphylococcus aureus</em> biofilm
- DOI:
10.1016/j.bpj.2021.11.1210 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Chloe Luyet;Paolo Elvati;Yichun Wang;Changjiang Liu;J. Scott VanEpps;Nicholas Kotov;Angela Violi - 通讯作者:
Angela Violi
Nicholas Kotov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Kotov', 18)}}的其他基金
CENTER FOR COMPLEX PARTICLE SYSTEMS (COMPASS)
复杂粒子系统中心(指南针)
- 批准号:
2243104 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Cooperative Agreement
LOCK-AND-KEY INTERACTIONS BETWEEN CHIRAL NANOPARTICLES AND PROTEINS
手性纳米粒子和蛋白质之间的锁匙相互作用
- 批准号:
2317423 - 财政年份:2023
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Planning IUCRC at University of Michigan: Center for Hierarchical Emergent Materials (CHEM)
密歇根大学 IUCCRC 规划:分层新兴材料中心 (CHEM)
- 批准号:
1939428 - 财政年份:2020
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
PFI-TT: Biomimetic Aramid Separators for Long-Lifetime Lithium-Sulfur Batteries
PFI-TT:用于长寿命锂硫电池的仿生芳纶隔膜
- 批准号:
1919201 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Chiral Ceramic Nanoparticles of Tungsten Oxides
氧化钨手性陶瓷纳米粒子
- 批准号:
1748529 - 财政年份:2018
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Nanospiked Particles for Photocatalysis
用于光催化的纳米尖峰颗粒
- 批准号:
1566460 - 财政年份:2016
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Layered Composites from Branched Nanofibers for Lithium Ion Batteries
用于锂离子电池的支化纳米纤维层状复合材料
- 批准号:
1538180 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Energy- and Cost- Efficient Manufacturing Employing Nanoparticle Self-Assembly with Continuous Crystallinity
采用具有连续结晶度的纳米颗粒自组装技术实现能源高效且成本高效的制造
- 批准号:
1463474 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
I-Corps: Ultrastrong, thermally stable aramid nanofibers (ANFs) membranes
I-Corps:超强、热稳定芳纶纳米纤维 (ANF) 膜
- 批准号:
1464101 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
Detection of Protein Misfolding Using Nanorod Assemblies
使用纳米棒组件检测蛋白质错误折叠
- 批准号:
1403777 - 财政年份:2014
- 资助金额:
$ 30万 - 项目类别:
Standard Grant
相似海外基金
Rational construction of hierarchical self-organized structures based on phase separation from transient condensates containing biopolymers
基于含有生物聚合物的瞬态冷凝物的相分离的分层自组织结构的合理构建
- 批准号:
22H02202 - 财政年份:2022
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Self-organized low-dimensional cavity structures of TOCOs towards electrically pumped organic lasers
用于电泵浦有机激光器的 TOCO 自组织低维腔结构
- 批准号:
19H02172 - 财政年份:2019
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Polymer/Inorganic Fusion Materials Using Self-Organized Structures of Liquid Crystals and Interface Interactions
利用液晶自组织结构和界面相互作用开发聚合物/无机融合材料
- 批准号:
15H02179 - 财政年份:2015
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Novel processing of functional semiconductor surfaces in meso-macro scale by utilizing self-organized structures
利用自组织结构在细观-宏观尺度上对功能半导体表面进行新颖的处理
- 批准号:
25289263 - 财政年份:2013
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exchange-Coupled Magnetism in Self-Organized Metallic Alloy Nanochessboard Structures
自组织金属合金纳米棋盘结构中的交换耦合磁性
- 批准号:
1105336 - 财政年份:2012
- 资助金额:
$ 30万 - 项目类别:
Continuing Grant
Self-Organized Structures of Semiconductor Nanocrystals and Their Photomagnetic Properties
半导体纳米晶的自组织结构及其光磁性能
- 批准号:
22350062 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
First-principles simulation of self-organized nano-structures with many-body interactions
多体相互作用自组织纳米结构的第一性原理模拟
- 批准号:
22740256 - 财政年份:2010
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Self-organization of gold nanoparticles and photochemical manipulation of their organized structures by means of liquid-crystalline molecules
金纳米粒子的自组织及其通过液晶分子对其组织结构进行光化学操纵
- 批准号:
21710094 - 财政年份:2009
- 资助金额:
$ 30万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
SONS - Biofunctional Self-Organized Nano-Structures of ionic/non-ionic amphiphilic copolymers, biopolymers-biomacromolecules and nanoparticles: from bioinspired to biointegrated systems
SONS - 离子/非离子两亲共聚物、生物聚合物-生物大分子和纳米颗粒的生物功能自组织纳米结构:从生物启发到生物集成系统
- 批准号:
25023065 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Research Grants
Superlattice structures and Nb-doping in self-organized TiO2 nanotube layers: Controlled growth and electronic properties
自组织 TiO2 纳米管层中的超晶格结构和 Nb 掺杂:控制生长和电子特性
- 批准号:
26416174 - 财政年份:2006
- 资助金额:
$ 30万 - 项目类别:
Priority Programmes