Energy- and Cost- Efficient Manufacturing Employing Nanoparticle Self-Assembly with Continuous Crystallinity
采用具有连续结晶度的纳米颗粒自组装技术实现能源高效且成本高效的制造
基本信息
- 批准号:1463474
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-05-01 至 2018-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Additive solution-based printing of electronic devices with nanoparticle dispersions is technologically attractive and inspires new sensing and information processing technologies. The key impediment for its wider use in nanomanufacturing is the presence of protective organic layer needed for their stabilization that hampers the charge transfer between nanoparticles. Its resolution has had considerable academic success but new strategies in this direction are needed in order to reduce the cost, energy requirements, improve its scalability, and alleviate environmental concerns. Realization of their low-temperature self-assembly into films with continuous crystallinity and competitive electrical properties will benefit energy storage/harvesting technologies, optoelectronics, and wearable health monitoring devices. The use of earth-abundant materials can potentially open different areas of applications in 'smart buildings' and agriculture that are expected to have a wide ranging ripple effect and contribute to improving the sustainability of the US economy. Novel teaching and learning programs will engender the next generation of innovators with a fundamental understanding of nanotechnology and the technological thresholds for nanomanufacturing, allowing new and creative devices to be developed. To achieve the objective of forming films with continuous crystallinity and competitive electrical properties, the projected method will take advantage of the ability of nanoparticles to self-assemble following the oriented attachment mechanism. This recently discovered technique leads to the self-orientation of the crystal lattices at their boundaries, which should greatly increase conductivity. This project will focus on the realization of oriented attachment for earth-abundant nanoparticles exemplified by the n-type semiconductor Cu2S. This material is attractive for nanomanufacturing not only because of its environmentally benign nature and low cost, but also for its promising electronic, plasmonic, and ion intercalation properties. Resolution of practical and fundamental issues surrounding the charge transport dilemma of solution-processed nanoparticle devices is central to this study. The findings expected for Cu2S can be extended to other device-relevant semiconductors, such as FeS2. Within three years, transition from basic understanding of self-assembly processes of Cu2S nanoparticles to crafting highly conductive films and nanomanufactured devices exemplified by lithium battery cathodes is expected.
具有纳米颗粒分散体的电子设备的基于添加剂溶液的印刷在技术上是有吸引力的,并且激发了新的传感和信息处理技术。 其在纳米制造中更广泛使用的关键障碍是其稳定所需的保护性有机层的存在,这阻碍了纳米颗粒之间的电荷转移。 它的解决方案已经取得了相当大的学术成功,但在这个方向上需要新的战略,以降低成本,能源需求,提高其可扩展性,并减轻环境问题。 实现它们的低温自组装成具有连续结晶度和竞争性电性能的薄膜将有利于能量存储/收集技术,光电子学和可穿戴健康监测设备。使用地球上丰富的材料可能会在“智能建筑”和农业中开辟不同的应用领域,预计将产生广泛的涟漪反应,并有助于提高美国经济的可持续性。 新颖的教学和学习计划将产生下一代创新者,他们对纳米技术和纳米制造的技术门槛有基本的了解,从而开发出新的创造性设备。为了实现形成具有连续结晶度和竞争性电性能的膜的目标,所提出的方法将利用纳米颗粒的能力,按照定向附着机制进行自组装。这种最近发现的技术导致晶格在其边界处的自取向,这将大大增加电导率。 本项目将致力于实现以n型半导体Cu 2S为代表的地球上丰富的纳米粒子的定向附着。这种材料对于纳米制造是有吸引力的,不仅因为其环境友好的性质和低成本,而且还因为其有前途的电子、等离子体和离子嵌入特性。解决实际和基本的问题,周围的解决方案处理的纳米粒子设备的电荷传输困境是这项研究的核心。 Cu 2S预期的发现可以扩展到其他与器件相关的半导体,如FeS 2。预计在三年内,从对Cu 2S纳米颗粒自组装过程的基本理解过渡到制作高导电薄膜和纳米制造设备,例如锂电池阴极。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Kotov其他文献
Nanocomposites are stretched thin
纳米复合材料被拉伸变薄
- DOI:
10.1038/nmat1224 - 发表时间:
2004-10-01 - 期刊:
- 影响因子:38.500
- 作者:
Nicholas Kotov - 通讯作者:
Nicholas Kotov
Complexity, disorder, and functionality of nanoscale materials
- DOI:
10.1557/s43577-024-00698-6 - 发表时间:
2024-04-12 - 期刊:
- 影响因子:4.900
- 作者:
Xiaoming Mao;Nicholas Kotov - 通讯作者:
Nicholas Kotov
Chiral Kirigami for Bend-Tolerant Real-Time Recon�gurable Holograms
用于耐弯曲实时可重构全息图的手性剪纸
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Won Jin;Choi;Lawrence Livermore;National Laboratory;Sang Hyun Lee;Nicholas Kotov - 通讯作者:
Nicholas Kotov
Structural characterization of PSMa1 functional amyloids in <em>Staphylococcus aureus</em> biofilm
- DOI:
10.1016/j.bpj.2021.11.1210 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Chloe Luyet;Paolo Elvati;Yichun Wang;Changjiang Liu;J. Scott VanEpps;Nicholas Kotov;Angela Violi - 通讯作者:
Angela Violi
Nicholas Kotov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Kotov', 18)}}的其他基金
CENTER FOR COMPLEX PARTICLE SYSTEMS (COMPASS)
复杂粒子系统中心(指南针)
- 批准号:
2243104 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Cooperative Agreement
LOCK-AND-KEY INTERACTIONS BETWEEN CHIRAL NANOPARTICLES AND PROTEINS
手性纳米粒子和蛋白质之间的锁匙相互作用
- 批准号:
2317423 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Planning IUCRC at University of Michigan: Center for Hierarchical Emergent Materials (CHEM)
密歇根大学 IUCCRC 规划:分层新兴材料中心 (CHEM)
- 批准号:
1939428 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
PFI-TT: Biomimetic Aramid Separators for Long-Lifetime Lithium-Sulfur Batteries
PFI-TT:用于长寿命锂硫电池的仿生芳纶隔膜
- 批准号:
1919201 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Chiral Ceramic Nanoparticles of Tungsten Oxides
氧化钨手性陶瓷纳米粒子
- 批准号:
1748529 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Nanospiked Particles for Photocatalysis
用于光催化的纳米尖峰颗粒
- 批准号:
1566460 - 财政年份:2016
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Layered Composites from Branched Nanofibers for Lithium Ion Batteries
用于锂离子电池的支化纳米纤维层状复合材料
- 批准号:
1538180 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
I-Corps: Ultrastrong, thermally stable aramid nanofibers (ANFs) membranes
I-Corps:超强、热稳定芳纶纳米纤维 (ANF) 膜
- 批准号:
1464101 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Detection of Protein Misfolding Using Nanorod Assemblies
使用纳米棒组件检测蛋白质错误折叠
- 批准号:
1403777 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
海洋智能物联与新能源技术研究和应用-智能海洋通信与低成本高效海洋清洁能源关键技术的研究与应用
- 批准号:2025C02018
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
高端纤维材料研发及应用-飞行器低成本轻量化碳纤维高效制备生产关键技术 研发及产业化
- 批准号:2025C02222
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
宽温域低成本磷酸锰钠基正极材料设计与高效储钠机制研究
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
高效低成本铜基金属卤化物植物照明光源研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cu调控羟基锚定位点构筑低成本高效Ag-Cu/Al2O3复合催化剂用于氨气选择性催化氧化
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
高效率、低成本热活化延迟荧光型有机电化学发光新体系探索
- 批准号:n/a
- 批准年份:2023
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于低成本给、受体材料构建高效且稳定的有机太阳电池
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
高效低成本光伏聚合物给体材料的设计与合成
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
缺陷诱导下绿色高效低成本多级孔分子筛的因势构筑与催化应用
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
小场景特定区域高效低成本高精地图制作研究
- 批准号:2021JJ60005
- 批准年份:2021
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Next generation additive manufacturing solution enabling local, sustainable and low cost production of energy efficient ceramic filtration membranes
下一代增材制造解决方案可实现本地、可持续和低成本生产节能陶瓷过滤膜
- 批准号:
10056737 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Launchpad
Demonstration of a digitized energy system integration across sectors enhancing flexibility and resilience towards an efficient, sustainable, cost-optimised, affordable, secure and stable energy supply (ELEXIA)
展示跨部门的数字化能源系统集成,增强灵活性和弹性,实现高效、可持续、成本优化、负担得起、安全和稳定的能源供应 (ELEXIA)
- 批准号:
10040861 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
EU-Funded
Divya: A energy-efficient and low-cost manual washing machine that provides low-income people with an alternative to hand-washing clothes.
Divya:一款节能、低成本的手动洗衣机,为低收入人群提供手洗衣服的替代方案。
- 批准号:
10044554 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Grant for R&D
ColdSpark Driven Energy and Cost-efficient Methane Cracking for Hydrogen Production
ColdSpark 驱动能源和经济高效的甲烷裂解制氢
- 批准号:
10038857 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
EU-Funded
STTR Phase I: Development of a zeolite filter to dry biomass in an energy efficient, cost effective, and gentle manner
STTR 第一阶段:开发沸石过滤器,以节能、经济且温和的方式干燥生物质
- 批准号:
2210385 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
A first-of-a-kind, ultra-low cost second life battery solution unlocking the mass-market for resource-efficient home energy storage
首创的超低成本二次寿命电池解决方案,打开资源节约型家庭储能的大众市场
- 批准号:
10007485 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Collaborative R&D
Highly Efficient Semiconductor Membrane Lasers toward Drastic Reduction of Data Transmission Energy Cost
高效半导体膜激光器可大幅降低数据传输能源成本
- 批准号:
20H02200 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High efficient III-V on Silicon Energy Harvesting devices for low cost battery-free IoT applications
适用于低成本无电池物联网应用的高效 III-V 硅能量收集设备
- 批准号:
46788 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Study
Designing cost-effective, power-efficient, and integrated solar energy harvesting modules
设计经济高效、节能的集成太阳能收集模块
- 批准号:
535117-2019 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Postgraduate Scholarships - Doctoral
Designing cost-effective, power-efficient, and integrated solar energy harvesting modules
设计经济高效、节能的集成太阳能收集模块
- 批准号:
535117-2019 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Postgraduate Scholarships - Doctoral