Reaction Directed Polymer Nanostructures through Self-Assembly and Photopolymerization
通过自组装和光聚合反应引导聚合物纳米结构
基本信息
- 批准号:0933450
- 负责人:
- 金额:$ 27.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0933450GuymonThis award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).The use of self-organizing liquid crystals is a method of enhancing performance of organic polymers through structural and chemical control on the nanometer scale. Functional nanostructured polymer materials based on lyotropic (i.e., amphiphilic) liquid crystals (LLCs) have the ability to self-organize in the presence of water into ordered assemblies with periodic nanometer-scale porous domains. Both polymerized LLC monomers and polymers templated by LLCs have recently shown great promise in applications such as solid-state organic catalysts, size selective membranes, and tissue engineering scaffolds. The major obstacle in forming nanostructured polymers using LLC systems is the difficulty in retaining and controlling the self-assembled structure throughout the polymerization. Typically, thermodynamically driven phase separation occurs during polymerization, leaving little or no liquid crystalline order. The PI plans to control both thermodynamic and kinetic factors to direct specific polymer nanostructures from LLC materials. Intellectual Merit: The goal is to utilize the polymerization reaction to direct organic polymer nanostructures through combination of photopolymerization and optimal LLC self-assembly. Research will focus on developing combinations of non-reactive and reactive surfactant systems that form LLC phases. These systems will then be used to template ordered morphology onto polymer networks. The photopolymerization of materials spanning a wide range of LLC phases will be monitored to understand changes in the order that they occur during polymerization. Factors that may influence polymer morphology including LLC phase structure and stability, cross-link density, and polymerization kinetics will be examined. It is assumed that the use of radical photopolymerization will play a pivotal role in this work. This method provides the ability to polymerize in fractions of a second at a wide range of temperatures, thereby allowing kinetic trapping of otherwise thermodynamically unfavorable polymer nanostructures. Polymer structures formed from both traditional chain and thiol-ene step growth polymerization mechanisms will be investigated. With the importance of nanostructure in this project, a number of powerful characterization tools (polarized light microscopy, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, solid state NMR, and swelling behavior) will be used to elucidate polymer structure during and after polymerization. Critical for success in this research effort is a thorough understanding of the photopolymerization process, including the unique aspects induced by a nanostructured environment. Therefore, photopolymerization kinetics and double bond conversion will be monitored in real-time using photo-differential scanning calorimetry, infra-red and Raman spectroscopy. The results obtained will outline the factors, both kinetic and thermodynamic, that can be used to govern and direct the ultimate polymer nanostructure. Broader Impact: One of the greatest promises of nanotechnology is the ability to control properties based on nano-scale architectures in organic polymers. This work will produce nanostructures reproducibly and consistently based on LLC geometries. Using the inherent speed of photopolymerization and optimal self-assembly throughout polymerization, control of polymer properties based on nano-scale geometries will be afforded. With such control substantial advances in applications as diverse as separation technology, drug delivery, catalysis, hydrogels, and tissue engineering could be realized. A prevailing theme in the project will be student education. Extensive involvement of undergraduate and graduate researchers in a discovery learning environment will be emphasized. The PI has a strong record of including minority student researchers at both the graduate and undergraduate level. At least one minority graduate student will directly participate in the research, and minority undergraduate researchers will be recruited as part of the AGEP Summer Research Program at the University of Iowa. Additionally, the importance of polymers in nanotechnology will be brought to high school students as part of a module presented yearly by the PI to chemistry classes at both local and rural high schools.
0933450盖蒙该奖项是根据2009年美国复苏和再投资法案(公法111 - 5)资助的。自组织液晶的使用是一种通过纳米尺度上的结构和化学控制来增强有机聚合物性能的方法。 基于溶致的功能纳米结构聚合物材料(即,两亲性)液晶(LLC)具有在水存在下自组织成具有周期性纳米级多孔域的有序组装体的能力。聚合的LLC单体和由LLC模板化的聚合物最近在诸如固态有机催化剂、尺寸选择性膜和组织工程支架的应用中显示出巨大的前景。使用LLC系统形成纳米结构聚合物的主要障碍是难以在整个聚合过程中保持和控制自组装结构。通常,在聚合期间发生结晶驱动的相分离,留下很少或没有液晶有序。PI计划控制热力学和动力学因素,以指导LLC材料的特定聚合物纳米结构。智力优势:目标是利用聚合反应通过光聚合和最佳LLC自组装的组合来引导有机聚合物纳米结构。研究将集中于开发形成LLC相的非反应性和反应性表面活性剂系统的组合。然后,这些系统将用于模板有序形态到聚合物网络。将监测跨越各种LLC相的材料的光聚合,以了解它们在聚合期间发生的顺序的变化。可能影响聚合物形态的因素,包括LLC相结构和稳定性,交联密度,和聚合动力学将被检查。据推测,自由基光聚合的使用将在这项工作中发挥关键作用。该方法提供了在宽范围的温度下在几分之一秒内捕获的能力,从而允许动力学捕获否则在化学上不利的聚合物纳米结构。聚合物结构形成从传统的链和硫醇烯逐步增长聚合机制将进行研究。随着纳米结构在本项目中的重要性,一些强大的表征工具(偏振光显微镜,X射线衍射,扫描电子显微镜,透射电子显微镜,固态NMR和溶胀行为)将用于阐明聚合过程中和聚合后的聚合物结构。在这项研究工作中取得成功的关键是彻底了解光聚合过程,包括纳米结构环境引起的独特方面。因此,将使用光差示扫描量热法、红外和拉曼光谱实时监测光聚合动力学和双键转化。所获得的结果将概述的因素,动力学和热力学,可用于管理和指导最终的聚合物纳米结构。更广泛的影响:纳米技术最大的希望之一是能够基于有机聚合物的纳米级结构控制性能。这项工作将产生纳米结构的可重复性和一致性的基础上LLC的几何形状。利用光聚合的固有速度和整个聚合过程中的最佳自组装,将提供基于纳米尺度几何形状的聚合物性能控制。通过这种控制,可以实现在分离技术、药物递送、催化、水凝胶和组织工程等多种应用中的实质性进步。该项目的一个主要主题将是学生教育。将强调本科生和研究生研究人员在发现学习环境中的广泛参与。PI在研究生和本科生阶段都有包括少数民族学生研究人员的良好记录。至少有一名少数民族研究生将直接参与研究,少数民族本科研究人员将被招募作为爱荷华州大学AGEP夏季研究计划的一部分。此外,聚合物在纳米技术中的重要性将作为PI每年向当地和农村高中化学课提供的模块的一部分带给高中生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allan Guymon其他文献
Microtopographical Features Recruit RhoA/ROCK through TRPV1 Channels to Direct Cell and Neurite Growth
微地形特征通过 TRPV1 通道招募 RhoA/ROCK 来指导细胞和神经突生长
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
M. Polacco;Shufeng Li;Bradley W. Tuft;Linjing Xu;Joseph C. Clarke;Allan Guymon;M. Hansen - 通讯作者:
M. Hansen
Characterization and Photopolymerization of Divinyl Fumarate
富马酸二乙烯酯的表征和光聚合
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Hua Wei;T. Lee;W. Miao;R. Fortenberry;D. Magers;S. Hait;Allan Guymon;S. Jonsson;C. Hoyle - 通讯作者:
C. Hoyle
Photopolymerized Patterning and Materials to Enhance Neural Prosthetic Performance
增强神经修复性能的光聚合图案和材料
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Bradley W. Tuft;Linjing Xu;Austin Hangartner;Scott P. White;M. Hansen;Allan Guymon - 通讯作者:
Allan Guymon
Allan Guymon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allan Guymon', 18)}}的其他基金
Control of Photopolymerization Kinetics and Thermodynamics in Self-assembled Surfactant Systems to Direct Polymer Nanostructure
自组装表面活性剂体系中光聚合动力学和热力学的控制以引导聚合物纳米结构
- 批准号:
1438486 - 财政年份:2014
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
Kinetic Control of Polymer Nanostructure in Lyotropic Liquid Crystalline Systems
溶致液晶体系中聚合物纳米结构的动力学控制
- 批准号:
0626395 - 财政年份:2006
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
PECASE: Photopolymerization Kinetics and Consequent Nanostructure of Lyotropic Liquid Crystalline Systems
PECASE:光聚合动力学和溶致液晶体系的纳米结构
- 批准号:
0328231 - 财政年份:2003
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
PECASE: Photopolymerization Kinetics and Consequent Nanostructure of Lyotropic Liquid Crystalline Systems
PECASE:光聚合动力学和溶致液晶体系的纳米结构
- 批准号:
0093911 - 财政年份:2001
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
相似国自然基金
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
The Development of Polymer Photocatalysts Directed by Introduction of Heteroatoms
引入杂原子引导聚合物光催化剂的发展
- 批准号:
23K17945 - 财政年份:2023
- 资助金额:
$ 27.75万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Confined and Directed Polymer Crystallization at Curved Liquid/Liquid Interface
弯曲液/液界面处的限域定向聚合物结晶
- 批准号:
1709136 - 财政年份:2017
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
Molecular Alignment Directed by Photo-Polymerization for Designing Optically Functional Polymer Films
光聚合引导的分子排列设计光学功能聚合物薄膜
- 批准号:
17J09899 - 财政年份:2017
- 资助金额:
$ 27.75万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CAREER: Directed Self-Assembly of Multifunctional Polymer Nanoreactors for Sustainable Chemical Manufacturing
职业:用于可持续化学制造的多功能聚合物纳米反应器的定向自组装
- 批准号:
1651957 - 财政年份:2017
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
Directed assembly of nanocrystals for tuneable semiconducting polymer composites
用于可调谐半导体聚合物复合材料的纳米晶体的定向组装
- 批准号:
EP/K009710/1 - 财政年份:2013
- 资助金额:
$ 27.75万 - 项目类别:
Research Grant
Directed assembly of nanocrystals for tuneable semiconducting polymer composites
用于可调谐半导体聚合物复合材料的纳米晶体的定向组装
- 批准号:
EP/K010298/1 - 财政年份:2013
- 资助金额:
$ 27.75万 - 项目类别:
Research Grant
Large-Scale and Predictable Organization of Nanocrystal Homo- and Heterojunctions through Polymer-Directed Processing
通过聚合物定向加工大规模且可预测地组织纳米晶体同质和异质结
- 批准号:
1200850 - 财政年份:2012
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
On-demand 3D polymer scaffolds for directed stem cell differentiation
用于定向干细胞分化的按需 3D 聚合物支架
- 批准号:
DP120100973 - 财政年份:2012
- 资助金额:
$ 27.75万 - 项目类别:
Discovery Projects
Polymer self-assembly directed hybrid nanostructures: from amorphous to polycrystalline to single crystal materials
聚合物自组装定向杂化纳米结构:从非晶到多晶再到单晶材料
- 批准号:
1104773 - 财政年份:2011
- 资助金额:
$ 27.75万 - 项目类别:
Standard Grant
Polymer-directed integration of quantum dots into mesoporous titania composites
聚合物定向将量子点整合到介孔二氧化钛复合材料中
- 批准号:
373502-2009 - 财政年份:2010
- 资助金额:
$ 27.75万 - 项目类别:
Postdoctoral Fellowships